Visible to Intel only — GUID: dvw1484165403741
Ixiasoft
1. Overview
2. Implementing the Transceiver PHY Layer in L-Tile/H-Tile
3. PLLs and Clock Networks
4. Resetting Transceiver Channels
5. Stratix® 10 L-Tile/H-Tile Transceiver PHY Architecture
6. Reconfiguration Interface and Dynamic Reconfiguration
7. Calibration
8. Debugging Transceiver Links
A. Logical View of the L-Tile/H-Tile Transceiver Registers
2.1. Transceiver Design IP Blocks
2.2. Transceiver Design Flow
2.3. Configuring the Native PHY IP Core
2.4. Using the Stratix® 10 L-Tile/H-Tile Transceiver Native PHY Stratix® 10 FPGA IP Core
2.5. Implementing the PHY Layer for Transceiver Protocols
2.6. Unused or Idle Transceiver Channels
2.7. Simulating the Native PHY IP Core
2.8. Implementing the Transceiver Native PHY Layer in L-Tile/H-Tile Revision History
2.3.1. Protocol Presets
2.3.2. GXT Channels
2.3.3. General and Datapath Parameters
2.3.4. PMA Parameters
2.3.5. PCS-Core Interface Parameters
2.3.6. Analog PMA Settings Parameters
2.3.7. Enhanced PCS Parameters
2.3.8. Standard PCS Parameters
2.3.9. PCS Direct Datapath Parameters
2.3.10. Dynamic Reconfiguration Parameters
2.3.11. Generation Options Parameters
2.3.12. PMA, Calibration, and Reset Ports
2.3.13. PCS-Core Interface Ports
2.3.14. Enhanced PCS Ports
2.3.15. Standard PCS Ports
2.3.16. Transceiver PHY PCS-to-Core Interface Reference Port Mapping
2.3.17. IP Core File Locations
2.4.2.1. Receiver Word Alignment
2.4.2.2. Receiver Clock Compensation
2.4.2.3. Encoding/Decoding
2.4.2.4. Running Disparity Control and Check
2.4.2.5. FIFO Operation for the Enhanced PCS
2.4.2.6. Polarity Inversion
2.4.2.7. Data Bitslip
2.4.2.8. Bit Reversal
2.4.2.9. Byte Reversal
2.4.2.10. Double Rate Transfer Mode
2.4.2.11. Asynchronous Data Transfer
2.4.2.12. Low Latency
2.5.1.1. Transceiver Channel Datapath for PIPE
2.5.1.2. Supported PIPE Features
2.5.1.3. How to Connect TX PLLs for PIPE Gen1, Gen2, and Gen3 Modes
2.5.1.4. How to Implement PCI Express (PIPE) in Stratix® 10 Transceivers
2.5.1.5. Native PHY IP Core Parameter Settings for PIPE
2.5.1.6. fPLL IP Core Parameter Settings for PIPE
2.5.1.7. ATX PLL IP Core Parameter Settings for PIPE
2.5.1.8. Native PHY IP Core Ports for PIPE
2.5.1.9. fPLL Ports for PIPE
2.5.1.10. ATX PLL Ports for PIPE
2.5.1.11. Preset Mappings to TX De-emphasis
2.5.1.12. How to Place Channels for PIPE Configurations
2.5.1.13. Link Equalization for Gen3
2.5.1.14. Timing Closure Recommendations
3.1. PLLs
3.2. Input Reference Clock Sources
3.3. Transmitter Clock Network
3.4. Clock Generation Block
3.5. FPGA Fabric-Transceiver Interface Clocking
3.6. Double Rate Transfer Mode
3.7. Transmitter Data Path Interface Clocking
3.8. Receiver Data Path Interface Clocking
3.9. Channel Bonding
3.10. PLL Cascading Clock Network
3.11. Using PLLs and Clock Networks
3.12. PLLs and Clock Networks Revision History
4.1. When Is Reset Required?
4.2. Transceiver PHY Reset Controller Stratix® 10 FPGA IP Implementation
4.3. How Do I Reset?
4.4. Using PCS Reset Status Port
4.5. Using Transceiver PHY Reset Controller Stratix® 10 FPGA IP
4.6. Using a User-Coded Reset Controller
4.7. Combining Status or PLL Lock Signals with User Coded Reset Controller
4.8. Resetting Transceiver Channels Revision History
4.3.1.1. Resetting the Transmitter After Power Up
4.3.1.2. Resetting the Transmitter During Device Operation
4.3.1.3. Resetting the Receiver After Power Up
4.3.1.4. Resetting the Receiver During Device Operation (Auto Mode)
4.3.1.5. Clock Data Recovery in Manual Lock Mode
4.3.1.6. Special TX PCS Reset Release Sequence
5.1. PMA Architecture
5.2. Enhanced PCS Architecture
5.3. Stratix® 10 Standard PCS Architecture
5.4. Stratix® 10 PCI Express Gen3 PCS Architecture
5.5. PCS Support for GXT Channels
5.6. Square Wave Generator
5.7. PRBS Pattern Generator
5.8. PRBS Pattern Verifier
5.9. Loopback Modes
5.10. Stratix® 10 L-Tile/H-Tile Transceiver PHY Architecture Revision History
5.1.2.1.1. Programmable Differential On-Chip Termination (OCT)
5.1.2.1.2. Signal Detector
5.1.2.1.3. Continuous Time Linear Equalization (CTLE)
5.1.2.1.4. Variable Gain Amplifier (VGA)
5.1.2.1.5. Adaptive Parametric Tuning (ADAPT) Engine
5.1.2.1.6. Decision Feedback Equalization (DFE)
5.1.2.1.7. On-Die Instrumentation
5.2.1.1. TX Core FIFO
5.2.1.2. TX PCS FIFO
5.2.1.3. Interlaken Frame Generator
5.2.1.4. Interlaken CRC-32 Generator
5.2.1.5. 64B/66B Encoder and Transmitter State Machine (TX SM)
5.2.1.6. Scrambler
5.2.1.7. Interlaken Disparity Generator
5.2.1.8. TX Gearbox, TX Bitslip and Polarity Inversion
5.2.1.9. KR FEC Blocks
5.2.2.1. RX Gearbox, RX Bitslip, and Polarity Inversion
5.2.2.2. Block Synchronizer
5.2.2.3. Interlaken Disparity Checker
5.2.2.4. Descrambler
5.2.2.5. Interlaken Frame Synchronizer
5.2.2.6. 64B/66B Decoder and Receiver State Machine (RX SM)
5.2.2.7. 10GBASE-R Bit-Error Rate (BER) Checker
5.2.2.8. Interlaken CRC-32 Checker
5.2.2.9. RX PCS FIFO
5.2.2.10. RX Core FIFO
5.3.1.4.1. 8B/10B Encoder Control Code Encoding
5.3.1.4.2. 8B/10B Encoder Reset Condition
5.3.1.4.3. 8B/10B Encoder Idle Character Replacement Feature
5.3.1.4.4. 8B/10B Encoder Current Running Disparity Control Feature
5.3.1.4.5. 8B/10B Encoder Bit Reversal Feature
5.3.1.4.6. 8B/10B Encoder Byte Reversal Feature
5.3.2.1.1. Word Aligner Bitslip Mode
5.3.2.1.2. Word Aligner Manual Mode
5.3.2.1.3. Word Aligner Synchronous State Machine Mode
5.3.2.1.4. Word Aligner Deterministic Latency Mode
5.3.2.1.5. Word Aligner Pattern Length for Various Word Aligner Modes
5.3.2.1.6. Word Aligner RX Bit Reversal Feature
5.3.2.1.7. Word Aligner RX Byte Reversal Feature
5.3.2.6.1. Byte Deserializer Disabled Mode
5.3.2.6.2. Byte Deserializer Deserialize x2 Mode
5.3.2.6.3. Byte Deserializer Deserialize x4 Mode
5.3.2.6.4. Bonded Byte Deserializer
5.3.2.6.5. Byte Ordering Register-Transfer Level (RTL)
5.3.2.6.6. Byte Serializer Effects on Data Propagation at the RX Side
5.3.2.6.7. ModelSim Byte Ordering Analysis
6.1. Reconfiguring Channel and PLL Blocks
6.2. Interacting with the Reconfiguration Interface
6.3. Multiple Reconfiguration Profiles
6.4. Arbitration
6.5. Recommendations for Dynamic Reconfiguration
6.6. Steps to Perform Dynamic Reconfiguration
6.7. Direct Reconfiguration Flow
6.8. Native PHY IP or PLL IP Core Guided Reconfiguration Flow
6.9. Reconfiguration Flow for Special Cases
6.10. Changing Analog PMA Settings
6.11. Ports and Parameters
6.12. Dynamic Reconfiguration Interface Merging Across Multiple IP Blocks
6.13. Embedded Debug Features
6.14. Timing Closure Recommendations
6.15. Unsupported Features
6.16. Transceiver Register Map
6.17. Reconfiguration Interface and Dynamic Revision History
7.5.1. Recalibrating a Duplex Channel (Both PMA TX and PMA RX)
7.5.2. Recalibrating the PMA RX Only in a Duplex Channel
7.5.3. Recalibrating the PMA TX Only in a Duplex Channel
7.5.4. Recalibrating a PMA Simplex RX Without a Simplex TX Merged into the Same Physical Channel
7.5.5. Recalibrating a PMA Simplex TX Without a Simplex RX Merged into the Same Physical Channel
7.5.6. Recalibrating Only a PMA Simplex RX in a Simplex TX Merged Physical Channel
7.5.7. Recalibrating Only a PMA Simplex TX in a Simplex RX Merged Physical Channel
7.5.8. Recalibrating the fPLL
7.5.9. Recalibrating the ATX PLL
7.5.10. Recalibrating the CMU PLL When it is Used as a TX PLL
A.4.1. Transmitter PMA Logical Register Map
A.4.2. Receiver PMA Logical Register Map
A.4.3. Pattern Generators and Checkers
A.4.4. Loopback
A.4.5. Optional Reconfiguration Logic PHY- Capability
A.4.6. Optional Reconfiguration Logic PHY- Control & Status
A.4.7. Embedded Streamer (Native PHY)
A.4.8. Static Polarity Inversion
A.4.9. Reset
A.4.10. CDR/CMU and PMA Calibration
Visible to Intel only — GUID: dvw1484165403741
Ixiasoft
2.3.14.1. Enhanced PCS TX and RX Control Ports
This section describes the tx_control and rx_control bit encodings for different protocol configurations.
When Enable simplified data interface is ON, all of the unused ports shown in the tables below, appear as a separate port. For example: It appears as unused_tx_control/ unused_rx_control port.
Enhanced PCS TX Control Port Bit Encodings
Note: When using double rate transfer, refer to the Transceiver PHY PCS-to-Core Interface Reference Port Mapping section.
Name | Bit | Functionality | Description |
---|---|---|---|
tx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[2] | Inversion control | A logic low indicates that the built-in disparity generator block in the Enhanced PCS maintains the Interlaken running disparity. | |
[7:3] | Unused | ||
[8] | Insert synchronous header error or CRC32 | You can use this bit to insert synchronous header error or CRC32 errors. The functionality is similar to tx_err_ins. Refer to tx_err_ins signal description in Interlaken Frame Generator, Synchronizer and CRC32 table for more details.
Note: You must tie tx_control[8] to 0 for all non-Interlaken L- and H-Tile Native PHY IP modes.
|
Name | Bit | Functionality |
---|---|---|
tx_control | [0] | XGMII control signal for parallel_data[7:0] |
[1] | XGMII control signal for parallel_data[15:8] | |
[2] | XGMII control signal for parallel_data[23:16] | |
[3] | XGMII control signal for parallel_data[31:24] | |
[4] | XGMII control signal for parallel_data[39:32] | |
[5] | XGMII control signal for parallel_data[47:40] | |
[6] | XGMII control signal for parallel_data[55:48] | |
[7] | XGMII control signal for parallel_data[63:56] | |
[8] | Unused |
Name | Bit | Functionality | Description |
---|---|---|---|
tx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[8:2] | Unused |
Name | Bit | Functionality | Description |
---|---|---|---|
tx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[2] | Inversion control | A logic low indicates that built-in disparity generator block in the Enhanced PCS maintains the running disparity. |
Enhanced PCS RX Control Port Bit Encodings
Name | Bit | Functionality | Description |
---|---|---|---|
rx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[2] | Inversion control | A logic low indicates that the built-in disparity generator block in the Enhanced PCS maintains the Interlaken running disparity. In the current implementation, this bit is always tied logic low (1'b0). | |
[3] | Payload word location | A logic high (1'b1) indicates the payload word location in a metaframe. | |
[4] | Synchronization word location | A logic high (1'b1) indicates the synchronization word location in a metaframe. | |
[5] | Scrambler state word location | A logic high (1'b1) indicates the scrambler word location in a metaframe. | |
[6] | SKIP word location | A logic high (1'b1) indicates the SKIP word location in a metaframe. | |
[7] | Diagnostic word location | A logic high (1'b1) indicates the diagnostic word location in a metaframe. | |
[8] | Synchronization header error, metaframe error, or CRC32 error status | A logic high (1'b1) indicates synchronization header error, metaframe error, or CRC32 error status. | |
[9] | Block lock and frame lock status | A logic high (1'b1) indicates that block lock and frame lock have been achieved. |
Name | Bit | Functionality |
---|---|---|
rx_control | [0] | XGMII control signal for parallel_data[7:0] |
[1] | XGMII control signal for parallel_data[15:8] | |
[2] | XGMII control signal for parallel_data[23:16] | |
[3] | XGMII control signal for parallel_data[31:24] | |
[4] | XGMII control signal for parallel_data[39:32] | |
[5] | XGMII control signal for parallel_data[47:40] | |
[6] | XGMII control signal for parallel_data[55:48] | |
[7] | XGMII control signal for parallel_data[63:56] | |
[9:8] | Unused |
Name | Bit | Functionality | Description |
---|---|---|---|
rx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[7:2] | Unused | ||
[9:8] | Unused |
Name | Bit | Functionality | Description |
---|---|---|---|
rx_control | [1:0] | Synchronous header | The value 2'b01 indicates a data word. The value 2'b10 indicates a control word. |
[2] | Inversion control | A logic low indicates that built-in disparity generator block in the Enhanced PCS maintains the running disparity. |