Visible to Intel only — GUID: xjg1491580792290
Ixiasoft
1. Planning Pin and FPGA Resources
2. DDR2 and DDR3 SDRAM Board Design Guidelines
3. Dual-DIMM DDR2 and DDR3 SDRAM Board Design Guidelines
4. LPDDR2 SDRAM Board Design Guidelines
5. RLDRAM II and RLDRAM 3 Board Design Guidelines
6. QDR II/II+ SRAM Board Design Guidelines
7. Implementing and Parameterizing Memory IP
8. Simulating Memory IP
9. Analyzing Timing of Memory IP
10. Debugging Memory IP
11. Optimizing the Controller
12. PHY Considerations
13. Power Estimation Methods for External Memory Interfaces
1.1.1. Estimating Pin Requirements
1.1.2. DDR, DDR2, and DDR3 SDRAM Clock Signals
1.1.3. DDR, DDR2, and DDR3 SDRAM Command and Address Signals
1.1.4. DDR, DDR2, and DDR3 SDRAM Data, Data Strobes, DM/DBI, and Optional ECC Signals
1.1.5. DDR, DDR2, and DDR3 SDRAM DIMM Options
1.1.6. QDR II and QDR II+ SRAM Clock Signals
1.1.7. QDR II and QDR II+ SRAM Command Signals
1.1.8. QDR II and QDR II+ SRAM Address Signals
1.1.9. QDR II and QDR II+ SRAM Data, BWS, and QVLD Signals
1.1.10. RLDRAM II and RLDRAM 3 Clock Signals
1.1.11. RLDRAM II and RLDRAM 3 Commands and Addresses
1.1.12. RLDRAM II and RLDRAM 3 Data, DM and QVLD Signals
1.1.13. LPDDR2 Clock Signal
1.1.14. LPDDR2 Command and Address Signal
1.1.15. LPDDR2 Data, Data Strobe, and DM Signals
1.1.16. Maximum Number of Interfaces
1.1.17. OCT Support
1.1.16.1. Maximum Number of DDR SDRAM Interfaces Supported per FPGA
1.1.16.2. Maximum Number of DDR2 SDRAM Interfaces Supported per FPGA
1.1.16.3. Maximum Number of DDR3 SDRAM Interfaces Supported per FPGA
1.1.16.4. Maximum Number of QDR II and QDR II+ SRAM Interfaces Supported per FPGA
1.1.16.5. Maximum Number of RLDRAM II Interfaces Supported per FPGA
1.1.16.6. Maximum Number of LPDDR2 SDRAM Interfaces Supported per FPGA
1.2.1. General Pin-out Guidelines for UniPHY-based External Memory Interface IP
1.2.2. Pin-out Rule Exceptions for ×36 Emulated QDR II and QDR II+ SRAM Interfaces in Arria II, Stratix III and Stratix IV Devices
1.2.3. Pin-out Rule Exceptions for RLDRAM II and RLDRAM 3 Interfaces
1.2.4. Pin-out Rule Exceptions for QDR II and QDR II+ SRAM Burst-length-of-two Interfaces
1.2.5. Pin Connection Guidelines Tables
1.2.6. PLLs and Clock Networks
1.2.5.1. DDR3 SDRAM With Leveling Interface Pin Utilization Applicable for Arria V GZ, Stratix III, Stratix IV, and Stratix V Devices
1.2.5.2. QDR II and QDR II+ SRAM Pin Utilization for Arria II, Arria V, Stratix III, Stratix IV, and Stratix V Devices
1.2.5.3. RLDRAM II CIO Pin Utilization for Arria II GZ, Arria V, Stratix III, Stratix IV, and Stratix V Devices
1.2.5.4. LPDDR2 Pin Utilization for Arria V, Cyclone V, and MAX 10 FPGA Devices
1.2.5.5. Additional Guidelines for Arria V GZ and Stratix V Devices
1.2.5.6. Additional Guidelines for Arria V ( Except Arria V GZ) Devices
1.2.5.7. Additional Guidelines for MAX 10 Devices
1.2.5.8. Additional Guidelines for Cyclone V Devices
1.2.6.1. Number of PLLs Available in Intel® Device Families
1.2.6.2. Number of Enhanced PLL Clock Outputs and Dedicated Clock Outputs Available in Intel® Device Families
1.2.6.3. Number of Clock Networks Available in Intel® Device Families
1.2.6.4. Clock Network Usage in UniPHY-based Memory Interfaces—DDR2 and DDR3 SDRAM (1) (2)
1.2.6.5. Clock Network Usage in UniPHY-based Memory Interfaces—RLDRAM II, and QDR II and QDR II+ SRAM
1.2.6.6. PLL Usage for DDR, DDR2, and DDR3 SDRAM Without Leveling Interfaces
1.2.6.7. PLL Usage for DDR3 SDRAM With Leveling Interfaces
2.1. Leveling and Dynamic Termination
2.2. DDR2 Terminations and Guidelines
2.3. DDR3 Terminations in Arria V, Cyclone V, Stratix III, Stratix IV, and Stratix V
2.4. Layout Approach
2.5. Channel Signal Integrity Measurement
2.6. Design Layout Guidelines
2.7. Package Deskew
2.8. Document Revision History
3.2.1. Overview of ODT Control
3.2.2. DIMM Configuration
3.2.3. Dual-DIMM Memory Interface with Slot 1 Populated
3.2.4. Dual-DIMM with Slot 2 Populated
3.2.5. Dual-DIMM Memory Interface with Both Slot 1 and Slot 2 Populated
3.2.6. Dual-DIMM DDR2 Clock, Address, and Command Termination and Topology
3.2.7. Control Group Signals
3.2.8. Clock Group Signals
7.2.1.1. DDR2 SDRAM Controller with UniPHY Intel FPGA IP Interfaces
7.2.1.2. DDR3 SDRAM Controller with UniPHY Intel FPGA IP Interfaces
7.2.1.3. LPDDR2 SDRAM Controller with UniPHY Intel FPGA IP Interfaces
7.2.1.4. QDR II and QDR II+ SRAM Controller with UniPHY Intel FPGA IP Interfaces
7.2.1.5. RLDRAM II Controller with UniPHY Intel FPGA IP Interfaces
7.2.1.6. RLDRAM 3 UniPHY Intel FPGA IP Interface
7.2.3.1. PHY Settings for UniPHY IP
7.2.3.2. Memory Parameters for LPDDR2, DDR2 and DDR3 SDRAM Controller with UniPHY Intel FPGA IP
7.2.3.3. Memory Parameters for QDR II and QDR II+ SRAM Controller with UniPHY Intel FPGA IP
7.2.3.4. Memory Parameters for RLDRAM II Controller with UniPHY Intel FPGA IP
7.2.3.5. Memory Timing Parameters for DDR2, DDR3, and LPDDR2 SDRAM Controller with UniPHY Intel FPGA IP
7.2.3.6. Memory Timing Parameters for QDR II and QDR II+ SRAM Controller with UniPHY Intel FPGA IP
7.2.3.7. Memory Timing Parameters for RLDRAM II Controller with UniPHY Intel FPGA IP
7.2.3.8. Memory Parameters for RLDRAM 3 UniPHY Intel FPGA IP
8.2.1. Simulation Scripts
8.2.2. Preparing the Vendor Memory Model
8.2.3. Functional Simulation with Verilog HDL
8.2.4. Functional Simulation with VHDL
8.2.5. Simulating the Example Design
8.2.6. UniPHY Abstract PHY Simulation
8.2.7. PHY-Only Simulation
8.2.8. Post-fit Functional Simulation
8.2.9. Simulation Issues
9.1. Memory Interface Timing Components
9.2. FPGA Timing Paths
9.3. Timing Constraint and Report Files for UniPHY IP
9.4. Timing Analysis Description
9.5. Timing Report DDR
9.6. Report SDC
9.7. Calibration Effect in Timing Analysis
9.8. Timing Model Assumptions and Design Rules
9.9. Common Timing Closure Issues
9.10. Optimizing Timing
9.11. Timing Deration Methodology for Multiple Chip Select DDR2 and DDR3 SDRAM Designs
9.12. Performing I/O Timing Analysis
9.13. Document Revision History
9.4.1.1. Address and Command
9.4.1.2. PHY or Core
9.4.1.3. PHY or Core Reset
9.4.1.4. Read Capture and Write
9.4.1.5. Read Resynchronization
9.4.1.6. DQS versus CK—Arria II GX and Cyclone IV Devices
9.4.1.7. Write Leveling tDQSS
9.4.1.8. Write Leveling tDSH/tDSS
9.4.1.9. DK versus CK (RLDRAM II with UniPHY)
9.4.1.10. Bus Turnaround Time
9.9.1. Missing Timing Margin Report
9.9.2. Incomplete Timing Margin Report
9.9.3. Read Capture Timing
9.9.4. Write Timing
9.9.5. Address and Command Timing
9.9.6. PHY Reset Recovery and Removal
9.9.7. Clock-to-Strobe (for DDR and DDR2 SDRAM Only)
9.9.8. Read Resynchronization and Write Leveling Timing (for SDRAM Only)
10.1. Resource and Planning Issues
10.2. Interface Configuration Performance Issues
10.3. Functional Issue Evaluation
10.4. Timing Issue Characteristics
10.5. Verifying Memory IP Using the Signal Tap II Logic Analyzer
10.6. Hardware Debugging Guidelines
10.7. Categorizing Hardware Issues
10.8. EMIF Debug Toolkit Overview
10.9. Document Revision History
10.3.1. Correct Combination of the Quartus Prime Software and ModelSim* - Intel® FPGA Edition Device Models
10.3.2. Intel® IP Memory Model
10.3.3. Vendor Memory Model
10.3.4. Insufficient Memory in Your PC
10.3.5. Transcript Window Messages
10.3.6. Passing Simulation
10.3.7. Modifying the Example Driver to Replicate the Failure
10.6.1. Create a Simplified Design that Demonstrates the Same Issue
10.6.2. Measure Power Distribution Network
10.6.3. Measure Signal Integrity and Setup and Hold Margin
10.6.4. Vary Voltage
10.6.5. Use Freezer Spray and Heat Gun
10.6.6. Operate at a Lower Speed
10.6.7. Determine Whether the Issue Exists in Previous Versions of Software
10.6.8. Determine Whether the Issue Exists in the Current Version of Software
10.6.9. Try A Different PCB
10.6.10. Try Other Configurations
10.6.11. Debugging Checklist
11.2.1. DDR2 SDRAM Controller
11.2.2. Auto-Precharge Commands
11.2.3. Additive Latency
11.2.4. Bank Interleaving
11.2.5. Command Queue Look-Ahead Depth
11.2.6. Additive Latency and Bank Interleaving
11.2.7. User-Controlled Refresh
11.2.8. Frequency of Operation
11.2.9. Burst Length
11.2.10. Series of Reads or Writes
11.2.11. Data Reordering
11.2.12. Starvation Control
11.2.13. Command Reordering
11.2.14. Bandwidth
11.2.15. Efficiency Monitor
Visible to Intel only — GUID: xjg1491580792290
Ixiasoft
7.5.3.3. Stratix 10 EMIF IP DDR4 Parameters: Mem I/O
Display Name | Identifier | Description |
---|---|---|
DB Host Interface DQ Driver | MEM_DDR4_DB_DQ_DRV_ENUM | Specifies the driver impedance setting for the host interface of the data buffer. This parameter determines the value of the control word BC03 of the data buffer. Perform board simulation to obtain the optimal value for this setting. |
DB Host Interface DQ RTT_NOM | MEM_DDR4_DB_RTT_NOM_ENUM | Specifies the RTT_NOM setting for the host interface of the data buffer. Only "RTT_NOM disabled" is supported. This parameter determines the value of the control word BC00 of the data buffer. |
DB Host Interface DQ RTT_PARK | MEM_DDR4_DB_RTT_PARK_ENUM | Specifies the RTT_PARK setting for the host interface of the data buffer. This parameter determines the value of control word BC02 of the data buffer. Perform board simulation to obtain the optimal value for this setting. |
DB Host Interface DQ RTT_WR | MEM_DDR4_DB_RTT_WR_ENUM | Specifies the RTT_WR setting of the host interface of the data buffer. This parameter determines the value of the control word BC01 of the data buffer. Perform board simulation to obtain the optimal value for this setting. |
Use recommended initial VrefDQ value | MEM_DDR4_DEFAULT_VREFOUT | Specifies to use the recommended initial VrefDQ value. This value is used as a starting point and may change after calibration. |
Output drive strength setting | MEM_DDR4_DRV_STR_ENUM | Specifies the output driver impedance setting at the memory device. To obtain optimum signal integrity performance, select option based on board simulation results. |
RCD CA Input Bus Termination | MEM_DDR4_RCD_CA_IBT_ENUM | Specifies the input termination setting for the following pins of the registering clock driver: DA0..DA17, DBA0..DBA1, DBG0..DBG1, DACT_n, DC2, DPAR. This parameter determines the value of bits DA[1:0] of control word RC7x of the registering clock driver. Perform board simulation to obtain the optimal value for this setting. |
RCD DCKE Input Bus Termination | MEM_DDR4_RCD_CKE_IBT_ENUM | Specifies the input termination setting for the following pins of the registering clock driver: DCKE0, DCKE1. This parameter determines the value of bits DA[5:4] of control word RC7x of the registering clock driver. Perform board simulation to obtain the optimal value for this setting. |
RCD DCS[3:0]_n Input Bus Termination | MEM_DDR4_RCD_CS_IBT_ENUM | Specifies the input termination setting for the following pins of the registering clock driver: DCS[3:0]_n. This parameter determines the value of bits DA[3:2] of control word RC7x of the registering clock driver. Perform board simulation to obtain the optimal value for this setting. |
RCD DODT Input Bus Termination | MEM_DDR4_RCD_ODT_IBT_ENUM | Specifies the input termination setting for the following pins of the registering clock driver: DODT0, DODT1. This parameter determines the value of bits DA[7:6] of control word RC7x of the registering clock driver. Perform board simulation to obtain the optimal value for this setting. |
ODT Rtt nominal value | MEM_DDR4_RTT_NOM_ENUM | Determines the nominal on-die termination value applied to the DRAM. The termination is applied any time that ODT is asserted. If you specify a different value for RTT_WR, that value takes precedence over the values mentioned here. For optimum signal integrity performance, select your option based on board simulation results. |
RTT PARK | MEM_DDR4_RTT_PARK | If set, the value is applied when the DRAM is not being written AND ODT is not asserted HIGH. |
Dynamic ODT (Rtt_WR) value | MEM_DDR4_RTT_WR_ENUM | Specifies the mode of the dynamic on-die termination (ODT) during writes to the memory device (used for multi-rank configurations). For optimum signal integrity performance, select this option based on board simulation results. |
RCD and DB Manufacturer (LSB) | MEM_DDR4_SPD_133_RCD_DB_VENDOR_LSB | Specifies the LSB of the ID code of the registering clock driver and data buffer manufacturer. The value must come from Byte 133 of the SPD from the DIMM vendor. |
RCD and DB Manufacturer (MSB) | MEM_DDR4_SPD_134_RCD_DB_VENDOR_MSB | Specifies the MSB of the ID code of the registering clock driver and data buffer manufacturer. The value must come from Byte 134 of the SPD from the DIMM vendor. |
RCD Revision Number | MEM_DDR4_SPD_135_RCD_REV | Specifies the die revision of the registering clock driver. The value must come from Byte 135 of the SPD from the DIMM vendor. |
SPD Byte 137 - RCD Drive Strength for Command/Address | MEM_DDR4_SPD_137_RCD_CA_DRV | Specifies the drive strength of the registering clock driver's control and command/address outputs to the DRAM. The value must come from Byte 137 of the SPD from the DIMM vendor. |
SPD Byte 138 - RCD Drive Strength for CK | MEM_DDR4_SPD_138_RCD_CK_DRV | Specifies the drive strength of the registering clock driver's clock outputs to the DRAM. The value must come from Byte 138 of the SPD from the DIMM vendor. |
DB Revision Number | MEM_DDR4_SPD_139_DB_REV | Specifies the die revision of the data buffer. The value must come from Byte 139 of the SPD from the DIMM vendor. |
SPD Byte 140 - DRAM VrefDQ for Package Rank 0 | MEM_DDR4_SPD_140_DRAM_VREFDQ_R0 | Specifies the VrefDQ setting for package rank 0 of an LRDIMM. The value must come from Byte 140 of the SPD from the DIMM vendor. |
SPD Byte 141 - DRAM VrefDQ for Package Rank 1 | MEM_DDR4_SPD_141_DRAM_VREFDQ_R1 | Specifies the VrefDQ setting for package rank 1 of an LRDIMM. The value must come from Byte 141 of the SPD from the DIMM vendor. |
SPD Byte 142 - DRAM VrefDQ for Package Rank 2 | MEM_DDR4_SPD_142_DRAM_VREFDQ_R2 | Specifies the VrefDQ setting for package rank 2 (if it exists) of an LRDIMM. The value must come from Byte 142 of the SPD from the DIMM vendor. |
SPD Byte 143 - DRAM VrefDQ for Package Rank 3 | MEM_DDR4_SPD_143_DRAM_VREFDQ_R3 | Specifies the VrefDQ setting for package rank 3 (if it exists) of an LRDIMM. The value must come from Byte 143 of the SPD from the DIMM vendor. |
SPD Byte 144 - DB VrefDQ for DRAM Interface | MEM_DDR4_SPD_144_DB_VREFDQ | Specifies the VrefDQ setting of the data buffer's DRAM interface. The value must come from Byte 144 of the SPD from the DIMM vendor. |
SPD Byte 145-147 - DB MDQ Drive Strength and RTT | MEM_DDR4_SPD_145_DB_MDQ_DRV | Specifies the drive strength of the MDQ pins of the data buffer's DRAM interface. The value must come from either Byte 145 (data rate = 1866), 146 (1866 data rate = 2400), or 147 (2400 data rate = 3200) of the SPD from the DIMM vendor. |
SPD Byte 148 - DRAM Drive Strength | MEM_DDR4_SPD_148_DRAM_DRV | Specifies the drive strength of the DRAM. The value must come from Byte 148 of the SPD from the DIMM vendor. |
SPD Byte 149-151 - DRAM ODT (RTT_WR and RTT_NOM) | MEM_DDR4_SPD_149_DRAM_RTT_WR_NOM | Specifies the RTT_WR and RTT_NOM setting of the DRAM. The value must come from either Byte 149 (data rate = 1866), 150 (1866 data rate = 2400), or 151 (2400 data rate = 3200) of the SPD from the DIMM vendor. |
SPD Byte 152-154 - DRAM ODT (RTT_PARK) | MEM_DDR4_SPD_152_DRAM_RTT_PARK | Specifies the RTT_PARK setting of the DRAM. The value must come from either Byte 152 (data rate = 1866), 153 (1866 data rate = 2400), or 154 (2400 data rate = 3200) of the SPD from the DIMM vendor. |
VrefDQ training range | MEM_DDR4_VREFDQ_TRAINING_RANGE | VrefDQ training range. |
VrefDQ training value | MEM_DDR4_VREFDQ_TRAINING_VALUE | VrefDQ training value. |
Display Name | Identifier | Description |
---|---|---|
Use Default ODT Assertion Tables | MEM_DDR4_USE_DEFAULT_ODT | Enables the default ODT assertion pattern as determined from vendor guidelines. These settings are provided as a default only; you should simulate your memory interface to determine the optimal ODT settings and assertion patterns. |