Visible to Intel only — GUID: sam1403482164836
Ixiasoft
1. Logic Array Blocks and Adaptive Logic Modules in Arria® 10 Devices
2. Embedded Memory Blocks in Arria® 10 Devices
3. Variable Precision DSP Blocks in Arria® 10 Devices
4. Clock Networks and PLLs in Arria® 10 Devices
5. I/O and High Speed I/O in Arria® 10 Devices
6. External Memory Interfaces in Arria® 10 Devices
7. Configuration, Design Security, and Remote System Upgrades in Arria® 10 Devices
8. SEU Mitigation for Arria® 10 Devices
9. JTAG Boundary-Scan Testing in Arria® 10 Devices
10. Power Management in Arria® 10 Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Arria® 10 Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Embedded Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Asynchronous Clear
2.11. Memory Blocks Error Correction Code Support
2.12. Embedded Memory Blocks in Arria® 10 Devices Revision History
3.4.1. Input Register Bank
3.4.2. Pipeline Register
3.4.3. Pre-Adder for Fixed-Point Arithmetic
3.4.4. Internal Coefficient for Fixed-Point Arithmetic
3.4.5. Multipliers
3.4.6. Adder
3.4.7. Accumulator and Chainout Adder for Fixed-Point Arithmetic
3.4.8. Systolic Registers for Fixed-Point Arithmetic
3.4.9. Double Accumulation Register for Fixed-Point Arithmetic
3.4.10. Output Register Bank
4.2.1. PLL Usage
4.2.2. PLL Architecture
4.2.3. PLL Control Signals
4.2.4. Clock Feedback Modes
4.2.5. Clock Multiplication and Division
4.2.6. Programmable Phase Shift
4.2.7. Programmable Duty Cycle
4.2.8. PLL Cascading
4.2.9. Reference Clock Sources
4.2.10. Clock Switchover
4.2.11. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O and Differential I/O Buffers in Arria® 10 Devices
5.2. I/O Standards and Voltage Levels in Arria® 10 Devices
5.3. Altera FPGA I/O IP Cores for Arria® 10 Devices
5.4. I/O Resources in Arria® 10 Devices
5.5. Architecture and General Features of I/Os in Arria® 10 Devices
5.6. High Speed Source-Synchronous SERDES and DPA in Arria® 10 Devices
5.7. Using the I/Os and High Speed I/Os in Arria® 10 Devices
5.8. I/O and High Speed I/O in Arria® 10 Devices Revision History
5.6.1. Arria® 10 LVDS SERDES Usage Modes
5.6.2. SERDES Circuitry
5.6.3. SERDES I/O Standards Support in Arria® 10 Devices
5.6.4. Differential Transmitter in Arria® 10 Devices
5.6.5. Differential Receiver in Arria® 10 Devices
5.6.6. PLLs and Clocking for Arria® 10 Devices
5.6.7. Timing and Optimization for Arria® 10 Devices
5.6.6.1. Clocking Differential Transmitters
5.6.6.2. Clocking Differential Receivers
5.6.6.3. Guideline: LVDS Reference Clock Source
5.6.6.4. Guideline: Use PLLs in Integer PLL Mode for LVDS
5.6.6.5. Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only
5.6.6.6. Guideline: Pin Placement for Differential Channels
5.6.6.7. LVDS Interface with External PLL Mode
5.7.1. I/O and High-Speed I/O General Guidelines for Arria® 10 Devices
5.7.2. Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards
5.7.3. Guideline: Maximum Current Driving I/O Pins While Turned Off and During Power Sequencing
5.7.4. Guideline: Using the I/O Pins in HPS Shared I/O Banks
5.7.5. Guideline: Maximum DC Current Restrictions
5.7.6. Guideline: LVDS SERDES IP Core Instantiation
5.7.7. Guideline: LVDS SERDES Pin Pairs for Soft-CDR Mode
5.7.8. Guideline: Minimizing High Jitter Impact on Arria® 10 GPIO Performance
5.7.9. Guideline: Usage of I/O Bank 2A for External Memory Interfaces
6.1. Key Features of the Arria® 10 External Memory Interface Solution
6.2. Memory Standards Supported by Arria® 10 Devices
6.3. External Memory Interface Widths in Arria® 10 Devices
6.4. External Memory Interface I/O Pins in Arria® 10 Devices
6.5. Memory Interfaces Support in Arria® 10 Device Packages
6.6. External Memory Interface IP Support in Arria® 10 Devices
6.7. External Memory Interface Architecture of Arria® 10 Devices
6.8. External Memory Interface in Arria® 10 Devices Revision History
6.5.1. Arria® 10 Package Support for DDR3 x40 with ECC
6.5.2. Arria® 10 Package Support for DDR3 x72 with ECC Single and Dual-Rank
6.5.3. Arria® 10 Package Support for DDR4 x40 with ECC
6.5.4. Arria® 10 Package Support for DDR4 x72 with ECC Single-Rank
6.5.5. Arria® 10 Package Support for DDR4 x72 with ECC Dual-Rank
6.5.6. HPS External Memory Interface Connections in Arria® 10
9.1. BST Operation Control
9.2. I/O Voltage for JTAG Operation
9.3. Performing BST
9.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
9.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
9.6. IEEE Std. 1149.1 Boundary-Scan Register
9.7. JTAG Boundary-Scan Testing in Arria® 10 Devices Revision History
10.1. Power Consumption
10.2. Power Reduction Techniques
10.3. Power Sense Line
10.4. Voltage Sensor
10.5. Temperature Sensing Diode
10.6. Power-On Reset Circuitry
10.7. Power Sequencing Considerations for Arria® 10 Devices
10.8. Power Supply Design
10.9. Power Management in Arria® 10 Devices Revision History
Visible to Intel only — GUID: sam1403482164836
Ixiasoft
5.5.4.2. RS OCT with Calibration in Arria® 10 Devices
The Arria® 10 devices support RS OCT with calibration in all LVDS I/O banks.
I/O Standard | Device Variant Support | Calibrated OCT (Output) | |
---|---|---|---|
RS (Ω) | RZQ (Ω) | ||
1.8 V LVCMOS | All | 25, 50 | 100 |
1.5 V LVCMOS | All | 25, 50 | 100 |
1.2 V LVCMOS | All | 25, 50 | 100 |
SSTL-18 Class I | All | 50 | 100 |
SSTL-18 Class II | All | 25 | 100 |
SSTL-15 Class I | All | 50 | 100 |
SSTL-15 Class II | All | 25 | 100 |
SSTL-15 | All | 25, 50 | 100 |
34, 40 | 240 | ||
SSTL-135 | All | 34, 40 | 240 |
SSTL-125 | All | 34, 40 | 240 |
SSTL-12 | All | 40, 60, 120, 240 | 240 |
POD12 | All | 34, 40, 48, 60 | 240 |
1.8 V HSTL Class I | All | 50 | 100 |
1.8 V HSTL Class II | All | 25 | 100 |
1.5 V HSTL Class I | All | 50 | 100 |
1.5 V HSTL Class II | All | 25 | 100 |
1.2 V HSTL Class I | All | 50 | 100 |
1.2 V HSTL Class II | All | 25 | 100 |
HSUL-12 | All | 34, 40, 48, 60, 80 | 240 |
Differential SSTL-18 Class I | All | 50 | 100 |
Differential SSTL-18 Class II | All | 25 | 100 |
Differential SSTL-15 Class I | All | 50 | 100 |
Differential SSTL-15 Class II | All | 25 | 100 |
Differential SSTL-15 | All | 25, 50 | 100 |
34, 40 | 240 | ||
Differential SSTL-135 | All | 34, 40 | 240 |
Differential SSTL-125 | All | 34, 40 | 240 |
Differential SSTL-12 | All | 40, 60, 120, 240 | 240 |
Differential POD12 | All | 34, 40, 48, 60 | 240 |
Differential 1.8 V HSTL Class I | All | 50 | 100 |
Differential 1.8 V HSTL Class II | All | 25 | 100 |
Differential 1.5 V HSTL Class I | All | 50 | 100 |
Differential 1.5 V HSTL Class II | All | 25 | 100 |
Differential 1.2 V HSTL Class I | All | 50 | 100 |
Differential 1.2 V HSTL Class II | All | 25 | 100 |
Differential HSUL-12 | All | 34, 40, 48, 60, 80 | 240 |
The RS OCT calibration circuit compares the total impedance of the I/O buffer to the external reference resistor connected to the RZQ pin and dynamically enables or disables the transistors until they match.
Calibration occurs at the end of device configuration. When the calibration circuit finds the correct impedance, the circuit powers down and stops changing the characteristics of the drivers.
Figure 86. RS OCT with CalibrationThis figure shows the RS as the intrinsic impedance of the output transistors.
Related Information