Visible to Intel only — GUID: sfo1410069792109
Ixiasoft
1. Intel® Arria® 10 Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Clock Manager
4. Reset Manager
5. FPGA Manager
6. System Manager
7. SoC Security
8. System Interconnect
9. HPS-FPGA Bridges
10. Cortex*-A9 Microprocessor Unit Subsystem
11. CoreSight* Debug and Trace
12. Error Checking and Correction Controller
13. On-Chip Memory
14. NAND Flash Controller
15. SD/MMC Controller
16. Quad SPI Flash Controller
17. DMA Controller
18. Ethernet Media Access Controller
19. USB 2.0 OTG Controller
20. SPI Controller
21. I2C Controller
22. UART Controller
23. General-Purpose I/O Interface
24. Timer
25. Watchdog Timer
26. Hard Processor System I/O Pin Multiplexing
27. Introduction to the HPS Component
28. Instantiating the HPS Component
29. HPS Component Interfaces
30. Simulating the HPS Component
A. Booting and Configuration
8.1.1. Features of the System Interconnect
8.1.2. System Interconnect Block Diagram and System Integration
8.1.3. Arria 10 HPS Secure Firewalls
8.1.4. About the Rate Adapters
8.1.5. About the SDRAM L3 Interconnect
8.1.6. About Arbitration and Quality of Service
8.1.7. About the Service Network
8.1.8. About the Observation Network
8.2.1. System Interconnect Address Spaces
8.2.2. Secure Transaction Protection
8.2.3. System Interconnect Master Properties
8.2.4. System Interconnect Slave Properties
8.2.5. System Interconnect Clocks
8.2.6. System Interconnect Resets
8.2.7. Functional Description of the Rate Adapters
8.2.8. Functional Description of the Firewalls
8.2.9. Functional Description of the SDRAM L3 Interconnect
8.2.10. Functional Description of the Arbitration Logic
8.2.11. Functional Description of the QoS Generators
8.2.12. Functional Description of the Observation Network
10.3.1. Functional Description
10.3.2. Implementation Details
10.3.3. Cortex*-A9 Processor
10.3.4. Interactive Debugging Features
10.3.5. L1 Caches
10.3.6. Preload Engine
10.3.7. Floating Point Unit
10.3.8. NEON* Multimedia Processing Engine
10.3.9. Memory Management Unit
10.3.10. Performance Monitoring Unit
10.3.11. Arm* Cortex* -A9 MPCore* Timers
10.3.12. Generic Interrupt Controller
10.3.13. Global Timer
10.3.14. Snoop Control Unit
10.3.15. Accelerator Coherency Port
11.1. Features of CoreSight* Debug and Trace
11.2. Arm* CoreSight* Documentation
11.3. CoreSight Debug and Trace Block Diagram and System Integration
11.4. Functional Description of CoreSight Debug and Trace
11.5. CoreSight* Debug and Trace Programming Model
11.6. CoreSight Debug and Trace Address Map and Register Definitions
11.4.1. Debug Access Port
11.4.2. System Trace Macrocell
11.4.3. Trace Funnel
11.4.4. CoreSight Trace Memory Controller
11.4.5. AMBA* Trace Bus Replicator
11.4.6. Trace Port Interface Unit
11.4.7. Embedded Cross Trigger System
11.4.8. Program Trace Macrocell
11.4.9. HPS Debug APB* Interface
11.4.10. FPGA Interface
11.4.11. Debug Clocks
11.4.12. Debug Resets
14.1. NAND Flash Controller Features
14.2. NAND Flash Controller Block Diagram and System Integration
14.3. NAND Flash Controller Signal Descriptions
14.4. Functional Description of the NAND Flash Controller
14.5. NAND Flash Controller Programming Model
14.6. NAND Flash Controller Address Map and Register Definitions
15.1. Features of the SD/MMC Controller
15.2. SD/MMC Controller Block Diagram and System Integration
15.3. SD/MMC Controller Signal Description
15.4. Functional Description of the SD/MMC Controller
15.5. SD/MMC Controller Programming Model
15.6. SD/MMC Controller Address Map and Register Definitions
16.1. Features of the Quad SPI Flash Controller
16.2. Quad SPI Flash Controller Block Diagram and System Integration
16.3. Quad SPI Flash Controller Signal Description
16.4. Functional Description of the Quad SPI Flash Controller
16.5. Quad SPI Flash Controller Programming Model
16.6. Quad SPI Flash Controller Address Map and Register Definitions
16.4.1. Overview
16.4.2. Data Slave Interface
16.4.3. SPI Legacy Mode
16.4.4. Register Slave Interface
16.4.5. Local Memory Buffer
16.4.6. DMA Peripheral Request Controller
16.4.7. Arbitration between Direct/Indirect Access Controller and STIG
16.4.8. Configuring the Flash Device
16.4.9. XIP Mode
16.4.10. Write Protection
16.4.11. Data Slave Sequential Access Detection
16.4.12. Clocks
16.4.13. Resets
16.4.14. Interrupts
18.6.1. System Level EMAC Configuration Registers
18.6.2. EMAC FPGA Interface Initialization
18.6.3. EMAC HPS Interface Initialization
18.6.4. DMA Initialization
18.6.5. EMAC Initialization and Configuration
18.6.6. Performing Normal Receive and Transmit Operation
18.6.7. Stopping and Starting Transmission
18.6.8. Programming Guidelines for Energy Efficient Ethernet
18.6.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
19.1. Features of the USB OTG Controller
19.2. USB OTG Controller Block Diagram and System Integration
19.3. USB 2.0 ULPI PHY Signal Description
19.4. Functional Description of the USB OTG Controller
19.5. USB OTG Controller Programming Model
19.6. USB 2.0 OTG Controller Address Map and Register Definitions
29.5.1.1. NAND Flash Controller Interface
29.5.1.2. SD/MMC Controller Interface
29.5.1.3. Quad SPI Flash Controller Interface
29.5.1.4. Ethernet Media Access Controller Interface
29.5.1.5. USB 2.0 OTG Controller Interface
29.5.1.6. SPI Controller Interface
29.5.1.7. I2C Controller Interface
29.5.1.8. UART Interface
30.1. Simulation Flows
30.2. Clock and Reset Interfaces
30.3. FPGA-to-HPS AXI Slave Interface
30.4. HPS-to-FPGA AXI Master Interface
30.5. Lightweight HPS-to-FPGA AXI Master Interface
30.6. HPS-to-FPGA MPU Event Interface
30.7. Interrupts Interface
30.8. HPS-to-FPGA Debug APB* Interface
30.9. FPGA-to-HPS System Trace Macrocell Hardware Event Interface
30.10. HPS-to-FPGA Cross-Trigger Interface
30.11. FPGA-to-HPS DMA Handshake Interface
30.12. Boot from FPGA Interface
30.13. Security Manager Anti-Tamper Signals Interface
30.14. EMIF Conduit
30.15. Pin MUX and Peripherals
Visible to Intel only — GUID: sfo1410069792109
Ixiasoft
21.5.3. Disabling the I2C Controller
The register IC_ENABLE_STATUS is added to allow software to unambiguously determine when the hardware has completely shutdown in response to the IC_ENABLE register being set from 1 to 0. †
- Define a timer interval (ti2c_poll) equal to the 10 times the signaling period for the highest I2C transfer speed used in the system and supported by the I2C controller. For example, if the highest I2C transfer mode is 400 Kbps, then ti2c_poll is 25 us. †
- Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling operation exceeds this maximum value, an error is reported. †
- Execute a blocking thread/process/function that prevents any further I2C master transactions to be started by software, but allows any pending transfers to be completed.
- This step can be ignored if the I2C controller is programmed to operate as an I2C slave only. †
- The variable POLL_COUNT is initialized to zero. †
- Set IC_ENABLE to 0. †
- Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by one. If POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code. †
- If IC_ENABLE_STATUS[0] is 1, then sleep for ti2c_poll and proceed to the previous step. Otherwise, exit with a relevant success code. †