Visible to Intel only — GUID: idj1486507552532
Ixiasoft
1. Intel® Cyclone® 10 GX Transceiver PHY Overview
2. Implementing Protocols in Intel® Cyclone® 10 GX Transceivers
3. PLLs and Clock Networks
4. Resetting Transceiver Channels
5. Cyclone® 10 GX Transceiver PHY Architecture
6. Reconfiguration Interface and Dynamic Reconfiguration
7. Calibration
8. Analog Parameter Settings
2.1. Transceiver Design IP Blocks
2.2. Transceiver Design Flow
2.3. Cyclone® 10 GX Transceiver Protocols and PHY IP Support
2.4. Using the Cyclone® 10 GX Transceiver Native PHY IP Core
2.5. Interlaken
2.6. Ethernet
2.7. PCI Express (PIPE)
2.8. CPRI
2.9. Other Protocols
2.10. Simulating the Transceiver Native PHY IP Core
2.11. Implementing Protocols in Intel® Cyclone® 10 GX Transceivers Revision History
2.2.1. Select and Instantiate the PHY IP Core
2.2.2. Configure the PHY IP Core
2.2.3. Generate the PHY IP Core
2.2.4. Select the PLL IP Core
2.2.5. Configure the PLL IP Core
2.2.6. Generate the PLL IP Core
2.2.7. Reset Controller
2.2.8. Create Reconfiguration Logic
2.2.9. Connect the PHY IP to the PLL IP Core and Reset Controller
2.2.10. Connect Datapath
2.2.11. Make Analog Parameter Settings
2.2.12. Compile the Design
2.2.13. Verify Design Functionality
2.4.1. Presets
2.4.2. General and Datapath Parameters
2.4.3. PMA Parameters
2.4.4. Enhanced PCS Parameters
2.4.5. Standard PCS Parameters
2.4.6. PCS Direct
2.4.7. Dynamic Reconfiguration Parameters
2.4.8. PMA Ports
2.4.9. Enhanced PCS Ports
2.4.10. Standard PCS Ports
2.4.11. IP Core File Locations
2.4.12. Unused Transceiver Channels
2.6.1.1. 8B/10B Encoding for GbE, GbE with IEEE 1588v2
2.6.1.2. Word Alignment for GbE, GbE with IEEE 1588v2
2.6.1.3. 8B/10B Decoding for GbE, GbE with IEEE 1588v2
2.6.1.4. Rate Match FIFO for GbE
2.6.1.5. How to Implement GbE, GbE with IEEE 1588v2 in Intel® Cyclone® 10 GX Transceivers
2.6.1.6. Native PHY IP Parameter Settings for GbE and GbE with IEEE 1588v2
2.6.2.1. The XGMII Clocking Scheme in 10GBASE-R
2.6.2.2. How to Implement 10GBASE-R and 10GBASE-R with IEEE 1588v2 in Intel® Cyclone® 10 GX Transceivers
2.6.2.3. Native PHY IP Parameter Settings for 10GBASE-R and 10GBASE-R with IEEE 1588v2
2.6.2.4. Native PHY IP Ports for 10GBASE-R and 10GBASE-R with IEEE 1588v2 Transceiver Configurations
2.7.1. Transceiver Channel Datapath for PIPE
2.7.2. Supported PIPE Features
2.7.3. How to Connect TX PLLs for PIPE Gen1 and Gen2 Modes
2.7.4. How to Implement PCI Express (PIPE) in Cyclone® 10 GX Transceivers
2.7.5. Native PHY IP Parameter Settings for PIPE
2.7.6. fPLL IP Parameter Core Settings for PIPE
2.7.7. ATX PLL IP Parameter Core Settings for PIPE
2.7.8. Native PHY IP Ports for PIPE
2.7.9. fPLL Ports for PIPE
2.7.10. ATX PLL Ports for PIPE
2.7.11. How to Place Channels for PIPE Configurations
2.7.2.1.1. Dynamic Switching Between Gen1 (2.5 Gbps) and Gen2 (5 Gbps)
2.7.2.1.2. Transmitter Electrical Idle Generation
2.7.2.1.3. Power State Management
2.7.2.1.4. 8B/10B Encoder Usage for Compliance Pattern Transmission Support
2.7.2.1.5. Receiver Status
2.7.2.1.6. Receiver Detection
2.7.2.1.7. Gen1 and Gen2 Clock Compensation
2.7.2.1.8. PCIe Reverse Parallel Loopback
2.9.1.1. How to Implement the Basic (Enhanced PCS) Transceiver Configuration Rules in Cyclone® 10 GX Transceivers
2.9.1.2. Native PHY IP Parameter Settings for Basic (Enhanced PCS)
2.9.1.3. How to Enable Low Latency in Basic Enhanced PCS
2.9.1.4. Enhanced PCS FIFO Operation
2.9.1.5. TX Data Bitslip
2.9.1.6. TX Data Polarity Inversion
2.9.1.7. RX Data Bitslip
2.9.1.8. RX Data Polarity Inversion
2.9.2.1. Word Aligner Manual Mode
2.9.2.2. Word Aligner Synchronous State Machine Mode
2.9.2.3. RX Bit Slip
2.9.2.4. RX Polarity Inversion
2.9.2.5. RX Bit Reversal
2.9.2.6. RX Byte Reversal
2.9.2.7. Rate Match FIFO in Basic (Single Width) Mode
2.9.2.8. Rate Match FIFO Basic (Double Width) Mode
2.9.2.9. 8B/10B Encoder and Decoder
2.9.2.10. 8B/10B TX Disparity Control
2.9.2.11. How to Enable Low Latency in Basic
2.9.2.12. TX Bit Slip
2.9.2.13. TX Polarity Inversion
2.9.2.14. TX Bit Reversal
2.9.2.15. TX Byte Reversal
2.9.2.16. How to Implement the Basic, Basic with Rate Match Transceiver Configuration Rules in Cyclone® 10 GX Transceivers
2.9.2.17. Native PHY IP Parameter Settings for Basic, Basic with Rate Match Configurations
3.1. PLLs
3.2. Input Reference Clock Sources
3.3. Transmitter Clock Network
3.4. Clock Generation Block
3.5. FPGA Fabric-Transceiver Interface Clocking
3.6. Transmitter Data Path Interface Clocking
3.7. Receiver Data Path Interface Clocking
3.8. Unused/Idle Clock Line Requirements
3.9. Channel Bonding
3.10. PLL Feedback and Cascading Clock Network
3.11. Using PLLs and Clock Networks
3.12. PLLs and Clock Networks Revision History
4.1. When Is Reset Required?
4.2. Transceiver PHY Implementation
4.3. How Do I Reset?
4.4. Using the Transceiver PHY Reset Controller
4.5. Using a User-Coded Reset Controller
4.6. Combining Status or PLL Lock Signals
4.7. Timing Constraints for Bonded PCS and PMA Channels
4.8. Resetting Transceiver Channels Revision History
4.3.2.1. Recommended Reset Sequence
4.3.2.2. Resetting the Transmitter During Device Operation
4.3.2.3. Resetting the Receiver During Device Operation
4.3.2.4. Dynamic Reconfiguration of Transmitter Channel Using the Acknowledgment Model
4.3.2.5. Dynamic Reconfiguration of Receiver Channel Using the Acknowledgment Model
5.2.1.1. Enhanced PCS TX FIFO
5.2.1.2. Interlaken Frame Generator
5.2.1.3. Interlaken CRC-32 Generator
5.2.1.4. 64B/66B Encoder and Transmitter State Machine (TX SM)
5.2.1.5. Pattern Generators
5.2.1.6. Scrambler
5.2.1.7. Interlaken Disparity Generator
5.2.1.8. TX Gearbox, TX Bitslip and Polarity Inversion
5.2.2.1. RX Gearbox, RX Bitslip, and Polarity Inversion
5.2.2.2. Block Synchronizer
5.2.2.3. Interlaken Disparity Checker
5.2.2.4. Descrambler
5.2.2.5. Interlaken Frame Synchronizer
5.2.2.6. 64B/66B Decoder and Receiver State Machine (RX SM)
5.2.2.7. Pseudo Random Pattern Verifier
5.2.2.8. 10GBASE-R Bit-Error Rate (BER) Checker
5.2.2.9. Interlaken CRC-32 Checker
5.2.2.10. Enhanced PCS RX FIFO
5.3.1.3.1. 8B/10B Encoder Control Code Encoding
5.3.1.3.2. 8B/10B Encoder Reset Condition
5.3.1.3.3. 8B/10B Encoder Idle Character Replacement Feature
5.3.1.3.4. 8B/10B Encoder Current Running Disparity Control Feature
5.3.1.3.5. 8B/10B Encoder Bit Reversal Feature
5.3.1.3.6. 8B/10B Encoder Byte Reversal Feature
5.3.2.1.1. Word Aligner Bit Slip Mode
5.3.2.1.2. Word Aligner Manual Mode
5.3.2.1.3. Word Aligner Synchronous State Machine Mode
5.3.2.1.4. Word Aligner Deterministic Latency Mode
5.3.2.1.5. Word Aligner Pattern Length for Various Word Aligner Modes
5.3.2.1.6. Word Aligner RX Bit Reversal Feature
5.3.2.1.7. Word Aligner RX Byte Reversal Feature
6.1. Reconfiguring Channel and PLL Blocks
6.2. Interacting with the Reconfiguration Interface
6.3. Configuration Files
6.4. Multiple Reconfiguration Profiles
6.5. Embedded Reconfiguration Streamer
6.6. Arbitration
6.7. Recommendations for Dynamic Reconfiguration
6.8. Steps to Perform Dynamic Reconfiguration
6.9. Direct Reconfiguration Flow
6.10. Native PHY IP or PLL IP Core Guided Reconfiguration Flow
6.11. Reconfiguration Flow for Special Cases
6.12. Changing PMA Analog Parameters
6.13. Ports and Parameters
6.14. Dynamic Reconfiguration Interface Merging Across Multiple IP Blocks
6.15. Embedded Debug Features
6.16. Using Data Pattern Generators and Checkers
6.17. Timing Closure Recommendations
6.18. Unsupported Features
6.19. Cyclone® 10 GX Transceiver Register Map
6.20. Reconfiguration Interface and Dynamic Reconfiguration Revision History
8.1. Making Analog Parameter Settings using the Assignment Editor
8.2. Updating Quartus Settings File with the Known Assignment
8.3. Analog Parameter Settings List
8.4. Receiver General Analog Settings
8.5. Receiver Analog Equalization Settings
8.6. Transmitter General Analog Settings
8.7. Transmitter Pre-Emphasis Analog Settings
8.8. Transmitter VOD Settings
8.9. Dedicated Reference Clock Settings
8.10. Unused Transceiver Channels Settings
8.11. Analog Parameter Settings Revision History
8.7.1. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_1T
8.7.2. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_2T
8.7.3. XCVR_C10_TX_PRE_EMP_SIGN_1ST_POST_TAP
8.7.4. XCVR_C10_TX_PRE_EMP_SIGN_2ND_POST_TAP
8.7.5. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T
8.7.6. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T
8.7.7. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP
8.7.8. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP
Visible to Intel only — GUID: idj1486507552532
Ixiasoft
6.15.2.2. Control and Status Registers
Control and status registers are optional registers that memory-map some of the status outputs from and control inputs to the Native PHY and PLL.
The following control and status registers are available for the Native PHY IP core.
Address | Type | Register | Description |
---|---|---|---|
0x2E0[0] | RW | set_rx_locktodata | Asserts the set_rx_locktodata signal to the receiver. 1'b1 sets the NPDME set_rx_locktodata register. See override_set_rx_locktodata. |
0x2E0[1] | RW | set_rx_locktoref | Asserts the set_rx_locktoref signal to the receiver. 1'b1 sets the NPDME set_rx_locktoref register. See override_set_rx_locktoref row below. |
0x2E0[2] | RW | override_set_rx_locktodata | Selects whether the receiver listens to the NPDME set_rx_locktodata register or the rx_set_locktodata port. 1'b1 indicates that the receiver listens to the NPDME set_rx_locktodata register. |
0x2E0[3] | RW | override_set_rx_locktoref | Selects whether the receiver is listens to the NPDME set_rx_locktoref register or the rx_set_locktoref port. 1'b1 indicates that the receiver listens to the NPDME set_rx_locktoref register. |
0x2E1[0] | RW | rx_seriallpbken | Enables the rx_seriallopbken feature in the transceiver. 1’b1 enables reverse serial loopback. |
0x2E2[0] | RW | rx_analogreset | Drives rx_analogreset when the override is set. |
0x2E2[1] | RW | rx_digitalreset | Drives rx_digitalreset when the override is set. |
0x2E2[2] | RW | tx_analogreset | Drives tx_analogreset when the override is set. |
0x2E2[3] | RW | tx_digitalreset | Drives tx_digitalreset when the override is set. |
0x2E2[4] | RW | override_rx_analogreset | Selects whether the receiver listens to the NPDME rx_analogreset register or the rx_analogreset port. 1'b1 indicates the receiver listens to the NPDME rx_analogreset register. |
0x2E2[5] | RW | override_rx_digitalreset | Selects whether the receiver listens to the NPDME rx_digitalreset register or the rx_digitalreset port. 1'b1 indicates the receiver listens to the NPDME rx_digitalreset register. |
0x2E2[6] | RW | override_tx_analogreset | Selects whether the receiver listens to the NPDME tx_analogreset register or the tx_analogreset port. 1'b1 indicates the receiver listens to the NPDME tx_analogreset register. |
0x2E2[7] | RW | override_tx_digitalreset | Selects whether the receiver listens to the NPDME tx_digitalreset register or the tx_digitalreset port. 1'b1 indicates the receiver listens to the NPDME tx_digitalreset register. |
Address | Type | Register | Description |
---|---|---|---|
0x280[0] | RO | rx_is_lockedtodata | Shows the status of the current channel’s rx_is_lockedtodata signal. 1’b1 indicates the receiver is locked to the incoming data. |
0x280[1] | RO | rx_is_lockedtoref | Shows the status of the current channel’s rx_is_lockedtoref signal. 1’b1 indicates the receiver is locked to the reference clock. |
0x281[0] | RO | tx_cal_busy | Shows the status of the transmitter calibration status. 1’b1 indicates the transmitter calibration is in progress. |
0x281[1] | RO | rx_cal_busy | Shows the status of the receiver calibration status. 1’b1 indicates the receiver calibration is in progress. |
0x281[2] | RO | avmm_busy | Shows the status of the internal configuration bus arbitration. 1’b1 indicates PreSICE has control of the internal configuration bus. 1'b0 indicates the user has control of the internal configuration bus. Refer to the Arbitration section for more details. For more details about calibration registers and performing user recalibration, refer to the Calibration chapter. |
The following control and status registers are available for the PLL IP cores.
Address | Type | Register | Description |
---|---|---|---|
0x2E0[0] | RW | pll_powerdown | Drives the PLL powerdown when the Override is set. |
0x2E0[1] | RW | override_pll_powerdown | Selects whether the receiver listens to the NPDME pll_powerdown register or the pll_powerdown port. 1’b1 indicates the receiver islistens to the NPDME pll_powerdown. |
Address | Type | Register | Description |
---|---|---|---|
0x280[0] | RO | pll_locked | Indicates if the PLL is locked. 1'b1 indicates the PLL is locked. |
0x280[1] | RO | pll_cal_busy | Indicates the calibration status. 1'b1 indicates the PLL is currently being calibrated. |
0x280[2] | RO | avmm_busy | Shows the status of the internal configuration bus arbitration. 1’b1 indicates PreSICE has control of the internal configuration bus. 1'b0 indicates the user has control of the internal configuration bus. Refer to the Arbitration section for more details. |