Visible to Intel only — GUID: nik1398707078602
Ixiasoft
2.2.2.2.1. Non-Bonded Channel Configurations Using the x1 Clock Network
2.2.2.2.2. Non-Bonded Channel Configurations Using the xN Clock Network
2.2.2.2.3. Bonded Channel Configurations
2.2.2.2.4. Bonded Channel Configurations Using the xN Clock Network
2.2.2.2.5. Bonded Channel Configurations Using the PLL Feedback Compensation Path
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1. Protocols and Transceiver PHY IP Support
4.2. 10GBASE-R and 10GBASE-KR
4.3. Interlaken
4.4. PCI Express (PCIe)—Gen1, Gen2, and Gen3
4.5. XAUI
4.6. CPRI and OBSAI—Deterministic Latency Protocols
4.7. Transceiver Configurations
4.8. Native PHY IP Configuration
4.9. Stratix V GT Device Configurations
4.10. Document Revision History
4.2.1. 10GBASE-R and 10GBASE-KR Transceiver Datapath Configuration
4.2.2. 10GBASE-R and 10GBASE-KR Supported Features
4.2.3. 1000BASE-X and 1000BASE-KX Transceiver Datapath
4.2.4. 1000BASE-X and 1000BASE-KX Supported Features
4.2.5. Synchronization State Machine Parameters in 1000BASE-X and 1000BASE-KX Configurations
4.2.6. Transceiver Clocking in 10GBASE-R, 10GBASE-KR, 1000BASE-X, and 1000BASE-KX Configurations
4.4.1. Transceiver Datapath Configuration
4.4.2. Supported Features for PCIe Configurations
4.4.3. Supported Features for PCIe Gen3
4.4.4. Transceiver Clocking and Channel Placement Guidelines
4.4.5. Advanced Channel Placement Guidelines for PIPE Configurations
4.4.6. Transceiver Clocking for PCIe Gen3
6.1. Dynamic Reconfiguration Features
6.2. Offset Cancellation
6.3. PMA Analog Controls Reconfiguration
6.4. On-Chip Signal Quality Monitoring (Eye Viewer)
6.5. Decision Feedback Equalization
6.6. Adaptive Equalization
6.7. Dynamic Reconfiguration of Loopback Modes
6.8. Transceiver PLL Reconfiguration
6.9. Transceiver Channel Reconfiguration
6.10. Transceiver Interface Reconfiguration
6.11. Document Revision History
Visible to Intel only — GUID: nik1398707078602
Ixiasoft
3.4.2. Resetting the Transceiver in CDR Manual Lock Mode
The numbers in this list correspond to the numbers in the following figure, which guides you through the steps to put the CDR in manual lock mode.
- Make sure that the calibration is complete (rx_cal_busy is low) and the transceiver goes through the initial reset sequence. The rx_digitalreset and rx_analogreset signals should be low. The rx_is_lockedtoref is a don't care and can be either high or low. The rx_is_lockedtodata and rx_ready signals should be high, indicating that the transceiver is out of reset. Alternatively, you can start directly with the CDR in manual lock mode after the calibration is complete.
- Assert the rx_set_locktoref signal high to switch the CDR to the lock-to-reference mode. The rx_is_lockedtodata status signal is deasserted. Assert the rx_digitalreset signal high at the same time or after rx_set_lockedtoref is asserted if you use the user-coded reset. When the Transceiver PHY reset controller is used, the rx_digitalreset is automatically asserted.
- After the rx_digitalreset signal gets asserted, the rx_ready status signal is deasserted.
- Assert the rx_set_locktodata signal high, tLTR_LTD_Manual (minimum 15 μs) after the CDR is locked to reference. rx_is_locktoref should be high and stable for a minimum tLTR_LTD_Manual (15 μs), before asserting rx_set_locktodata. This is required to filter spurious glitches on rx_is_lockedtoref. The rx_is_lockedtodata status signal gets asserted, which indicates that the CDR is now set to LTD mode.
The rx_is_lockedtoref status signal can be a high or low and can be ignored after asserting rx_set_locktodata high after the CDR is locked to reference.
- Deassert the rx_digitalreset signal after a minimum of tLTD_Manual (4 μs).
- If you are using the Transceiver PHY Reset Controller, the rx_ready status signal gets asserted after the rx_digitalreset signal is deasserted. This indicates that the receiver is now ready to receive data with the CDR in manual mode.
Figure 85. Reset Sequence Timing Diagram for Receiver when CDR is in Manual Lock Mode