Visible to Intel only — GUID: cjw1557106895440
Ixiasoft
1. Introduction to the Intel® Agilex™ Device Design Guidelines
2. System Specification
3. Device Selection
4. Security Considerations
5. Design Entry
6. Board and Software Considerations
7. Design Implementation, Analysis, Optimization, and Verification
8. Debugging
9. Embedded Software Design Guidelines for Intel® Agilex™ SoC FPGAs
5.1.1. Firewall Planning
5.1.2. Boot And Configuration Considerations
5.1.3. HPS Clocking and Reset Design Considerations
5.1.4. Reset Configuration
5.1.5. HPS Pin Multiplexing Design Considerations
5.1.6. HPS I/O Settings: Constraints and Drive Strengths
5.1.7. Design Guidelines for HPS Interfaces
5.1.8. Interfacing between the FPGA and HPS
5.1.9. Implementing the Intel® Agilex™ HPS Component
7.1. Selecting a Synthesis Tool
7.2. Device Resource Utilization Reports
7.3. Intel® Quartus® Prime Messages
7.4. Timing Constraints and Analysis
7.5. Area and Timing Optimization
7.6. Preserving Performance and Reducing Compilation Time
7.7. Designing with Intel® Hyperflex™
7.8. Simulation
7.9. Power Analysis
7.10. Power Optimization
7.11. Design Implementation, Analysis, Optimization, and Verification Revision History
9.1. Overview
9.2. Golden Hardware Reference Design (GHRD)
9.3. Define Software Requirements
9.4. Define Software Architecture
9.5. Selecting Software Tools
9.6. Choosing the Bootloader Software
9.7. Selecting an Operating System for Your Application
9.8. Assembling Your Software Development Platform for Linux*
9.9. Assembling your Software Development Platform for Partner OS or RTOS
9.10. Driver Considerations
9.11. Boot And Configuration Considerations
9.12. System Reset Considerations
9.13. Flash Considerations
9.14. Develop Application
9.15. Test and Validate
9.16. Embedded Software Design Guidelines Revision History
Visible to Intel only — GUID: cjw1557106895440
Ixiasoft
7.10.2. Intel® Quartus® Prime Power Optimization Techniques
Number | Done? | Checklist Item |
---|---|---|
1 | Review recommended design techniques and Intel® Quartus® Prime options to optimize power consumption. |
The Intel® Quartus® Prime software offers power-optimized synthesis and fitting to reduce core dynamic power.
Optimizing your design for area also saves power because fewer logic blocks are used; therefore, there is typically less switching activity. Improving your design source code to optimize for performance can also reduce power usage. You can use the DSE and Power Optimization Advisor to provide additional suggestions to reduce power.