Video and Vision Processing Suite IP User Guide

ID 683329
Date 3/30/2025
Public

Visible to Intel only — GUID: zyg1619090945742

Ixiasoft

Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter IP 8. 1D LUT IP 9. 3D LUT IP 10. Adaptive Noise Reduction IP 11. Advanced Test Pattern Generator IP 12. AXI-Stream Broadcaster IP 13. Bits per Color Sample Adapter IP 14. Black Level Correction IP 15. Black Level Statistics IP 16. Chroma Key IP 17. Chroma Resampler IP 18. Clipper IP 19. Clocked Video Input IP 20. Clocked Video to Full-Raster Converter IP 21. Clocked Video Output IP 22. Color Plane Manager IP 23. Color Space Converter IP 24. Defective Pixel Correction IP 25. Deinterlacer IP 26. Demosaic IP 27. FIR Filter IP 28. Frame Cleaner IP 29. Full-Raster to Clocked Video Converter IP 30. Full-Raster to Streaming Converter IP 31. Genlock Controller IP 32. Generic Crosspoint IP 33. Genlock Signal Router IP 34. Guard Bands IP 35. Histogram Statistics IP 36. Interlacer IP 37. Mixer IP 38. Pixels in Parallel Converter IP 39. Scaler IP 40. Stream Cleaner IP 41. Switch IP 42. Text Box IP 43. Tone Mapping Operator IP 44. Test Pattern Generator IP 45. Unsharp Mask IP 46. Video and Vision Monitor Intel FPGA IP 47. Video Frame Buffer IP 48. Video Frame Reader Intel FPGA IP 49. Video Frame Writer Intel FPGA IP 50. Video Streaming FIFO IP 51. Video Timing Generator IP 52. Vignette Correction IP 53. Warp IP 54. White Balance Correction IP 55. White Balance Statistics IP 56. Design Security 57. Document Revision History for Video and Vision Processing Suite User Guide

43.1. About the Tone Mapping Operator IP

The tone mapping operator (TMO) Intel FPGA IP dynamically adapts the processing of an image based on a regional (tile-based) approach. It improves the visibility of latent image detail and enhances the overall viewing experience.

You can configure the required number of bits per symbol and pixels in parallel. Typical applications include:

  • Medical imaging
  • Machine vision
  • Video conferencing
  • Surveillance
  • Automotive imaging
Figure 117.  Example of processing a real-life image using the TMO IPThe figure shows example results obtained after applying the TMO IP dataflow on a real-life image: left is the original image; right is the output image after TMO IP processing.

You provide and receive video data to the TMO IP in RGB format via the AXI4-Stream compatible Intel FPGA video streaming interfaces. The IP determines the size of the video busses from the number of pixels processed per clock cycle, the color bit depth, and the number of component streams parameters. The number of video component streams is fixed at 3. The IP supports:

  • Component bit depths of 8, 10 and 12-bit.
  • Pixels per clock of 1, 2 and 4.

You control the strength of the contrast enhancement for the output images provided by the TMO IP via an Avalon memory-mapped control interface. The data bus for the control interface is set to 32-bit to interface with an embedded CPU. During operation, you can configure the TMO IP using a software driver that controls all the IP parameters via a set of software APIs.

The TMO IP allows four modes of operations:

  • Passthrough
  • Contrast-enhancement
  • Horizontal and vertical slider
  • Region of interest

The Example of processing a real-life image using the TMO IP figure shows passthrough and contrast enhancement.

Region of interest allows you to define a specific window within the active picture, so that the contrast enhancement is only applied in that specific part of the output image.

Figure 118. Examples of horizontal slider and region of interest

The TMO IP supports RGB sampling. The sampling method at the output is always the same as the input. You must provide details of the current standard video resolution via the CPU control interface to ensure correct behavior. the IP only supports 4:4:4 progressive sampling. You should perform any deinterlacing and chroma up or down sampling externally to the TMO IP.

The IP only supports lite variants. For more information about full and lite variants, refer to the Intel FPGA Streaming Video Protocol Specification