Video and Vision Processing Suite IP User Guide

ID 683329
Date 3/30/2025
Public

Visible to Intel only — GUID: aio1637680796727

Ixiasoft

Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter IP 8. 1D LUT IP 9. 3D LUT IP 10. Adaptive Noise Reduction IP 11. Advanced Test Pattern Generator IP 12. AXI-Stream Broadcaster IP 13. Bits per Color Sample Adapter IP 14. Black Level Correction IP 15. Black Level Statistics IP 16. Chroma Key IP 17. Chroma Resampler IP 18. Clipper IP 19. Clocked Video Input IP 20. Clocked Video to Full-Raster Converter IP 21. Clocked Video Output IP 22. Color Plane Manager IP 23. Color Space Converter IP 24. Defective Pixel Correction IP 25. Deinterlacer IP 26. Demosaic IP 27. FIR Filter IP 28. Frame Cleaner IP 29. Full-Raster to Clocked Video Converter IP 30. Full-Raster to Streaming Converter IP 31. Genlock Controller IP 32. Generic Crosspoint IP 33. Genlock Signal Router IP 34. Guard Bands IP 35. Histogram Statistics IP 36. Interlacer IP 37. Mixer IP 38. Pixels in Parallel Converter IP 39. Scaler IP 40. Stream Cleaner IP 41. Switch IP 42. Text Box IP 43. Tone Mapping Operator IP 44. Test Pattern Generator IP 45. Unsharp Mask IP 46. Video and Vision Monitor Intel FPGA IP 47. Video Frame Buffer IP 48. Video Frame Reader Intel FPGA IP 49. Video Frame Writer Intel FPGA IP 50. Video Streaming FIFO IP 51. Video Timing Generator IP 52. Vignette Correction IP 53. Warp IP 54. White Balance Correction IP 55. White Balance Statistics IP 56. Design Security 57. Document Revision History for Video and Vision Processing Suite User Guide

38.1. About the Pixels in Parallel Converter IP

The Intel FPGA streaming video protocol allows multiple pixels to be transmitted in a single clock cycle (beat). The number of pixels the interface transmits per beat (pixels in parallel) is a fixed property of the interface. The IP converts from one value of pixels in parallel at the input interface to a higher or lower number of pixels in parallel at the output interface. The IP supports any number of pixels in parallel between 1 and 8 for both the input and output interface and supports all possible conversions.

To help manage data rates, the IP includes the option for a FIFO buffer on the datapath. For conversions that lower the pixels in parallel, the IP locates the FIFO buffer at the input interface, before the conversion logic. For conversions that increase the pixels in parallel, the IP locates the FIFO buffer at the output interface, after the conversion logic. A parameter selects either single clock or dual clock mode for the FIFO buffer. If you select dual clock mode, the input and output interfaces can run on different clock domains.

To correctly implement the pixels in parallel conversion in all cases, the IP must know how many pixels are in each video line. Without this information the IP does not know how many of the pixels in parallel are valid on the final beat of each video line packet. If you configure the IP for use with the full variant of the Intel FPGA streaming video protocol, you can obtain this information directly from the image information packets contained within the video stream. The IP has no requirement for a register map or for the control agent interface to access it. If you configure for the lite variant of the protocol, the video stream has no image information so you must supply the line length through the register map, via the control agent interface. Selecting to use the lite variant of the protocol automatically enables the control agent interface.