Cyclone® 10 GX Core Fabric and General Purpose I/Os Handbook
ID
683775
Date
5/16/2025
Public
1. Logic Array Blocks and Adaptive Logic Modules in Cyclone® 10 GX Devices
2. Embedded Memory Blocks in Cyclone® 10 GX Devices
3. Variable Precision DSP Blocks in Cyclone® 10 GX Devices
4. Clock Networks and PLLs in Cyclone® 10 GX Devices
5. I/O and High Speed I/O in Cyclone® 10 GX Devices
6. External Memory Interfaces in Cyclone® 10 GX Devices
7. Configuration, Design Security, and Remote System Upgrades in Cyclone® 10 GX Devices
8. SEU Mitigation for Cyclone® 10 GX Devices
9. JTAG Boundary-Scan Testing in Cyclone® 10 GX Devices
10. Power Management in Cyclone® 10 GX Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Cyclone® 10 GX Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Embedded Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Asynchronous Clear
2.11. Memory Blocks Error Correction Code Support
2.12. Embedded Memory Blocks in Cyclone® 10 GX Devices Revision History
3.4.1. Input Register Bank
3.4.2. Pipeline Register
3.4.3. Pre-Adder for Fixed-Point Arithmetic
3.4.4. Internal Coefficient for Fixed-Point Arithmetic
3.4.5. Multipliers
3.4.6. Adder
3.4.7. Accumulator and Chainout Adder for Fixed-Point Arithmetic
3.4.8. Systolic Registers for Fixed-Point Arithmetic
3.4.9. Double Accumulation Register for Fixed-Point Arithmetic
3.4.10. Output Register Bank
4.2.1. PLL Usage
4.2.2. PLL Architecture
4.2.3. PLL Control Signals
4.2.4. Clock Feedback Modes
4.2.5. Clock Multiplication and Division
4.2.6. Programmable Phase Shift
4.2.7. Programmable Duty Cycle
4.2.8. PLL Cascading
4.2.9. Reference Clock Sources
4.2.10. Clock Switchover
4.2.11. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O and Differential I/O Buffers in Cyclone® 10 GX Devices
5.2. I/O Standards and Voltage Levels in Cyclone® 10 GX Devices
5.3. Altera FPGA I/O IP Cores for Cyclone® 10 GX Devices
5.4. I/O Resources in Cyclone® 10 GX Devices
5.5. Architecture and General Features of I/Os in Cyclone® 10 GX Devices
5.6. High Speed Source-Synchronous SERDES and DPA in Cyclone® 10 GX Devices
5.7. Using the I/Os and High Speed I/Os in Cyclone® 10 GX Devices
5.8. I/O and High Speed I/O in Cyclone® 10 GX Devices Revision History
5.6.1. Cyclone® 10 GX LVDS SERDES Usage Modes
5.6.2. SERDES Circuitry
5.6.3. SERDES I/O Standards Support in Cyclone® 10 GX Devices
5.6.4. Differential Transmitter in Cyclone® 10 GX Devices
5.6.5. Differential Receiver in Cyclone® 10 GX Devices
5.6.6. PLLs and Clocking for Cyclone® 10 GX Devices
5.6.7. Timing and Optimization for Cyclone® 10 GX Devices
5.6.6.1. Clocking Differential Transmitters
5.6.6.2. Clocking Differential Receivers
5.6.6.3. Guideline: LVDS Reference Clock Source
5.6.6.4. Guideline: Use PLLs in Integer PLL Mode for LVDS
5.6.6.5. Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only
5.6.6.6. Guideline: Pin Placement for Differential Channels
5.6.6.7. LVDS Interface with External PLL Mode
5.7.1. I/O and High-Speed I/O General Guidelines for Cyclone® 10 GX Devices
5.7.2. Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards
5.7.3. Guideline: Maximum Current Driving I/O Pins While Turned Off and During Power Sequencing
5.7.4. Guideline: Maximum DC Current Restrictions
5.7.5. Guideline: LVDS SERDES IP Core Instantiation
5.7.6. Guideline: LVDS SERDES Pin Pairs for Soft-CDR Mode
5.7.7. Guideline: Minimizing High Jitter Impact on Cyclone® 10 GX GPIO Performance
5.7.8. Guideline: Usage of I/O Bank 2A for External Memory Interfaces
6.1. Key Features of the Cyclone® 10 GX External Memory Interface Solution
6.2. Memory Standards Supported by Cyclone® 10 GX Devices
6.3. External Memory Interface Widths in Cyclone® 10 GX Devices
6.4. External Memory Interface I/O Pins in Cyclone® 10 GX Devices
6.5. Memory Interfaces Support in Cyclone® 10 GX Device Packages
6.6. External Memory Interface IP Support in Cyclone® 10 GX Devices
6.7. External Memory Interface Architecture of Cyclone® 10 GX Devices
6.8. External Memory Interfaces in Cyclone® 10 GX Devices Revision History
9.1. BST Operation Control
9.2. I/O Voltage for JTAG Operation
9.3. Performing BST
9.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
9.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
9.6. IEEE Std. 1149.1 Boundary-Scan Register
9.7. IEEE Std. 1149.6 Boundary-Scan Register
9.8. JTAG Boundary-Scan Testing in Cyclone® 10 GX Devices Revision History
10.1. Power Consumption
10.2. Programmable Power Technology
10.3. Power Sense Line
10.4. Voltage Sensor
10.5. Temperature Sensing Diode
10.6. Power-On Reset Circuitry
10.7. Power Sequencing Considerations for Cyclone® 10 GX Devices
10.8. Power Supply Design
10.9. Power Management in Cyclone® 10 GX Devices Revision History
8.2.1.1.2. Error Message Register
The EMR contains information on the error type, the location of the error, and the actual syndrome. This register is 78 bits wide in Cyclone® 10 GX devices. The EMR does not identify the location bits for uncorrectable errors. The location of the errors consists of the frame number, double word location and bit location within the frame and column.
You can shift out the contents of the register through the following:
- EMR Unloader IP core—core interface
- SHIFT_EDERROR_REG JTAG instruction—JTAG interface
Figure 155. Error Message Register Map
| Name | Width (Bits) | Description |
|---|---|---|
| Frame Address | 16 | Frame Number of the error location |
| Column-Based Double Word | 2 | There are 4 double words per frame in a column. It indicates the double word location of the error |
| Column-Based Bits | 5 | Error location within 32-bit double word |
| Column-Based Type | 3 | Types of error shown in unresolvable-reference.html#sss1430125838313__table_ED4A604D6A214CCA955EA0B7C0DC5857 |
| Frame-Based syndrome register | 32 | Contains the 32-bit CRC signature calculated for the current frame. If the CRC value is 0, the CRC_ERROR pin is driven low to indicate no error. Otherwise, the pin is pulled high. |
| Frame-Based Double Word | 10 | Double word location within the CRAM frame. |
| Frame-Based Bit | 5 | Error location within 32-bit double word |
| Frame-Based Type | 3 | Types of error shown in unresolvable-reference.html#sss1430125838313__table_ED4A604D6A214CCA955EA0B7C0DC5857 |
| Reserved | 1 | Reserved bit |
| Column-Based Check-Bits Update | 1 | Logic high if there is error encountered during the column check-bits update stage. The CRC_ERROR pin will be asserted and stay high until the FPGA is reconfigured. |
Retrieving Error Information
You can retrieve the EMR contents via the core interface or the JTAG interface using the SHIFT_EDERROR_REG JTAG instruction. Altera provides the Error Message Register Unloader Intel® FPGA IP core that unload EMR content via core interface and allows it to be shared between several design component.
Error Type in EMR
| Error Types | Bit 2 | Bit 1 | Bit 0 | Description |
|---|---|---|---|---|
| Frame-based | 0 | 0 | 0 | No error |
| 0 | 0 | 1 | Single-bit error | |
| 0 | 1 | X | Double-adjacent error | |
| 1 | 1 | 1 | Uncorrectable error | |
| Column-Based | 0 | 0 | 0 | No error |
| 0 | 0 | 1 | Single bit error | |
| 0 | 1 | X | Double-adjacent error in a same frame | |
| 1 | 0 | X | Double-adjacent error in a different frame | |
| 1 | 1 | 0 | Double-adjacent error in a different frame | |
| 1 | 1 | 1 | Uncorrectable error |