1. About the Video and Image Processing Suite
2. Avalon Streaming Video
3. Clocked Video
4. VIP Run-Time Control
5. Getting Started
6. VIP Connectivity Interfacing
7. Clocked Video Interface IPs
8. 2D FIR II IP Core
9. Mixer II IP Core
10. Clipper II IP Core
11. Color Plane Sequencer II IP Core
12. Color Space Converter II IP Core
13. Chroma Resampler II IP Core
14. Control Synchronizer IP Core
15. Deinterlacer II IP Core
16. Frame Buffer II IP Core
17. Gamma Corrector II IP Core
18. Configurable Guard Bands IP Core
19. Interlacer II IP Core
20. Scaler II IP Core
21. Switch II IP Core
22. Test Pattern Generator II IP Core
23. Trace System IP Core
24. Warp Lite Intel FPGA IP
25. Avalon-ST Video Stream Cleaner IP Core
26. Avalon-ST Video Monitor IP Core
27. VIP IP Core Software Control
28. Security Considerations
29. Video and Image Processing Suite User Guide Archives
30. Document Revision History for the Video and Image Processing Suite User Guide
A. Avalon-ST Video Verification IP Suite
7.1. Supported Features for Clocked Video Output II IP
7.2. Control Port
7.3. Clocked Video Input IP Format Detection
7.4. Clocked Video Output IP Video Modes
7.5. Clocked Video Output II Latency Mode
7.6. Generator Lock
7.7. Underflow and Overflow
7.8. Timing Constraints
7.9. Handling Ancillary Packets
7.10. Modules for Clocked Video Input II IP Core
7.11. Clocked Video Input II Signals, Parameters, and Registers
7.12. Clocked Video Output II Signals, Parameters, and Registers
15.1. Deinterlacing Algorithm Options
15.2. Deinterlacing Algorithms
15.3. Run-time Control
15.4. Pass-Through Mode for Progressive Frames
15.5. Cadence Detection (Motion Adaptive Deinterlacing Only)
15.6. Avalon-MM Interface to Memory
15.7. Motion Adaptive Mode Bandwidth Requirements
15.8. Avalon-ST Video Support
15.9. 4K Video Passthrough Support
15.10. Behavior When Unexpected Fields are Received
15.11. Handling of Avalon-ST Video Control Packets
15.12. Deinterlacer II Parameter Settings
15.13. Deinterlacing Control Registers
A.3.1. c_av_st_video_control
A.3.2. c_av_st_video_data
A.3.3. c_av_st_video_file_io
A.3.4. c_av_st_video_item
A.3.5. c_av_st_video_source_sink_base
A.3.6. c_av_st_video_sink_bfm_’SINK
A.3.7. c_av_st_video_source_bfm_’SOURCE
A.3.8. c_av_st_video_user_packet
A.3.9. c_pixel
A.3.10. av_mm_transaction
A.3.11. av_mm_master_bfm_`MASTER_NAME
A.3.12. av_mm_slave_bfm_`SLAVE_NAME
A.3.13. av_mm_control_register
A.3.14. av_mm_control_base
3.1.2. Embedded Synchronization Format: Clocked Video Input
The CVI IP cores support both 8 and 10-bit TRS and XYZ words.
When in 10-bit mode, the IP cores ignore the bottom 2 bits of the TRS and XYZ words to allow easy transition from an 8-bit system.
Bits | 10-bit | 8-bit | Description |
---|---|---|---|
Unused |
[5:0] | [3:0] | These bits are not inspected by the CVI IP cores. |
H (sync) |
6 | 4 | When 1, the video is in a horizontal blanking period. |
V (sync) |
7 | 5 | When 1, the video is in a vertical blanking period. |
F (field) |
8 | 6 | When 1, the video is interlaced and in field 1. When 0, the video is either progressive or interlaced and in field 0. |
Unused |
9 | 7 | These bits are not inspected by the CVI IP cores. |
For the embedded synchronization format, the vid_datavalid signal indicates a valid BT656 or BT1120 sample. The CVI IP cores only read the vid_data signal when vid_datavalid is 1.
Figure 15. Vid_datavalid Timing
The CVI IP cores extract any ancillary packets from the Y channel during the vertical blanking. Ancillary packets are not extracted from the horizontal blanking.
- Clocked Video Input IP core—The extracted packets are produced through the CVI IP core's Avalon-ST output with a packet type of 13 (0xD).
- Clocked Video Input II IP core— The extracted packets are stored in a RAM in the IP core, which can be read through the control interface.