AN 796: Cyclone® V and Arria® V SoC Device Design Guidelines
ID
683360
Date
3/30/2022
Public
1. Overview of the Design Guidelines for Cyclone® V SoC FPGAs and Arria® V SoC FPGAs
2. Background: Comparison between Cyclone® V SoC FPGA and Arria® V SoC FPGA HPS Subsystems
3. Design Guidelines for HPS portion of SoC FPGAs
4. Board Design Guidelines for SoC FPGAs
5. Embedded Software Design Guidelines for SoC FPGAs
A. Support and Documentation
B. Additional Information
4.2.1.1. Boot Source
4.2.1.2. Select Desired Flash Device
4.2.1.3. BSEL Options
4.2.1.4. Boot Clock
4.2.1.5. CSEL Options
4.2.1.6. Selecting NAND Flash Devices
4.2.1.7. Determine Flash Programming Method
4.2.1.8. For QSPI and SD/MMC/eMMC Provide Flash Memory Reset
4.2.1.9. Selecting QSPI Flash Devices
4.5.1. HPS EMAC PHY Interfaces
4.5.2. USB Interface Design Guidelines
4.5.3. QSPI Flash Interface Design Guidelines
4.5.4. SD/MMC and eMMC Card Interface Design Guidelines
4.5.5. NAND Flash Interface Design Guidelines
4.5.6. UART Interface Design Guidelines
4.5.7. I2C Interface Design Guidelines
4.5.8. SPI Interface Design Guidelines
5.1.1. Assembling the Components of Your Software Development Platform
5.1.2. Selecting an Operating System for Your Application
5.1.3. Assembling your Software Development Platform for Linux
5.1.4. Assembling a Software Development Platform for a Bare-Metal Application
5.1.5. Assembling your Software Development Platform for a Partner OS or RTOS
5.1.6. Choosing Boot Loader Software
5.1.7. Selecting Software Tools for Development, Debug and Trace
5.5.1.1. Enable Runtime Calibration Report
5.5.1.2. Change DLEVEL To Get More Debug Information
5.5.1.3. Enable Example Driver for HPS SDRAM
5.5.1.4. Change Data Pattern in Example Driver
5.5.1.5. Example Code to Write and Read from All Addresses
5.5.1.6. Read/Write to HPS Register in Preloader
5.5.1.7. Check HPS PLL Lock Status in Preloader
3.6. Managing Coherency for FPGA Accelerators
Data shared between the HPS and the FPGA logic can be modified at any time, by either the HPS or the FPGA. Many applications require data coherency, which means that changes are propagated throughout the system, so that every master accesses the most up-to-date data value.
When you design for data coherency, first you must determine which data transfers need to be coherent. By default all access between the FPGA and HPS are assumed to be non-coherent unless coherency is explicitly managed by software or using coherent hardware features of the HPS (SCU and ACP).
To determine if peripherals in the FPGA need coherent access to HPS memory, answer the follow questions:
- Does the MPU need to access data generated by my FPGA peripheral?
- Does the FPGA peripheral need to access data generated by the MPU?
If the answer to either question is "Yes", the data must be coherent. You can use the ACP to keep the FPGA coherent with cacheable data in the HPS.