AN 796: Cyclone® V and Arria® V SoC Device Design Guidelines
ID
683360
Date
3/30/2022
Public
1. Overview of the Design Guidelines for Cyclone® V SoC FPGAs and Arria® V SoC FPGAs
2. Background: Comparison between Cyclone® V SoC FPGA and Arria® V SoC FPGA HPS Subsystems
3. Design Guidelines for HPS portion of SoC FPGAs
4. Board Design Guidelines for SoC FPGAs
5. Embedded Software Design Guidelines for SoC FPGAs
A. Support and Documentation
B. Additional Information
4.2.1.1. Boot Source
4.2.1.2. Select Desired Flash Device
4.2.1.3. BSEL Options
4.2.1.4. Boot Clock
4.2.1.5. CSEL Options
4.2.1.6. Selecting NAND Flash Devices
4.2.1.7. Determine Flash Programming Method
4.2.1.8. For QSPI and SD/MMC/eMMC Provide Flash Memory Reset
4.2.1.9. Selecting QSPI Flash Devices
4.5.1. HPS EMAC PHY Interfaces
4.5.2. USB Interface Design Guidelines
4.5.3. QSPI Flash Interface Design Guidelines
4.5.4. SD/MMC and eMMC Card Interface Design Guidelines
4.5.5. NAND Flash Interface Design Guidelines
4.5.6. UART Interface Design Guidelines
4.5.7. I2C Interface Design Guidelines
4.5.8. SPI Interface Design Guidelines
5.1.1. Assembling the Components of Your Software Development Platform
5.1.2. Selecting an Operating System for Your Application
5.1.3. Assembling your Software Development Platform for Linux
5.1.4. Assembling a Software Development Platform for a Bare-Metal Application
5.1.5. Assembling your Software Development Platform for a Partner OS or RTOS
5.1.6. Choosing Boot Loader Software
5.1.7. Selecting Software Tools for Development, Debug and Trace
5.5.1.1. Enable Runtime Calibration Report
5.5.1.2. Change DLEVEL To Get More Debug Information
5.5.1.3. Enable Example Driver for HPS SDRAM
5.5.1.4. Change Data Pattern in Example Driver
5.5.1.5. Example Code to Write and Read from All Addresses
5.5.1.6. Read/Write to HPS Register in Preloader
5.5.1.7. Check HPS PLL Lock Status in Preloader
3.4.3. Integrating the HPS EMIF with the SoC FPGA Device
Consider the following when integrating the Cyclone® V or Arria® V SoC HPS EMIF with the rest of the SoC system design.
GUIDELINE: Follow the guidelines for optimizing bandwidth for all masters accessing the HPS SDRAM
Accesses to SDRAM connected to the HPS EMIF go through the L3 Interconnect (except for FPGA-to-SDRAM bridge). When designing and configuring high bandwidth DMA masters and related buffering in the FPGA core, refer to DMA Considerations. The principles covered in that section apply to all high bandwidth DMA masters (for example DMA controller components, integrated DMA controllers in custom peripherals) and related buffering in the FPGA core that access HPS resources (for example HPS SDRAM) through the FPGA-to-SDRAM and FPGA-to-HPS bridge ports, not just tightly-coupled HPS hardware accelerators.