Visible to Intel only — GUID: mwh1410471314935
Ixiasoft
1. Design Optimization Overview
2. Optimizing the Design Netlist
3. Timing Closure and Optimization
4. Area Optimization
5. Analyzing and Optimizing the Design Floorplan
6. Netlist Optimizations and Physical Synthesis
7. Engineering Change Orders with the Chip Planner
A. Intel® Quartus® Prime Standard Edition User Guides
2.1. When to Use the Netlist Viewers: Analyzing Design Problems
2.2. Intel® Quartus® Prime Design Flow with the Netlist Viewers
2.3. RTL Viewer Overview
2.4. State Machine Viewer Overview
2.5. Technology Map Viewer Overview
2.6. Netlist Viewer User Interface
2.7. Schematic View
2.8. State Machine Viewer
2.9. Cross-Probing to a Source Design File and Other Intel® Quartus® Prime Windows
2.10. Cross-Probing to the Netlist Viewers from Other Intel® Quartus® Prime Windows
2.11. Viewing a Timing Path
2.12. Optimizing the Design Netlist Revision History
2.7.1. Display Schematics in Multiple Tabbed View
2.7.2. Schematic Symbols
2.7.3. Select Items in the Schematic View
2.7.4. Shortcut Menu Commands in the Schematic View
2.7.5. Filtering in the Schematic View
2.7.6. View Contents of Nodes in the Schematic View
2.7.7. Moving Nodes in the Schematic View
2.7.8. View LUT Representations in the Technology Map Viewer
2.7.9. Zoom Controls
2.7.10. Navigating with the Bird's Eye View
2.7.11. Partition the Schematic into Pages
2.7.12. Follow Nets Across Schematic Pages
3.1. Optimize Multi Corner Timing
3.2. Critical Paths
3.3. Design Evaluation for Timing Closure
3.4. Design Analysis
3.5. Timing Optimization
3.6. Periphery to Core Register Placement and Routing Optimization
3.77.7. Scripting Support3.77.7. Scripting Support
3.8. Timing Closure and Optimization Revision History
3.4.3.1. Displaying Path Reports with the Timing Analyzer
3.4.3.2. Tips for Analyzing Failing Paths
3.4.3.3. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
3.4.3.4. Tips for Analyzing Paths from/to the Source and Destination of Critical Path
3.4.3.5. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
3.4.3.6. Global Routing Resources
3.5.1. Displaying Timing Closure Recommendations for Failing Paths
3.5.2. Timing Optimization Advisor
3.5.3. Optional Fitter Settings
3.5.4. I/O Timing Optimization Techniques
3.5.5. Register-to-Register Timing Optimization Techniques
3.5.6. Logic Lock (Standard) Assignments
3.5.7. Location Assignments
3.5.8. Metastability Analysis and Optimization Techniques
3.5.4.1. Optimize IOC Register Placement for Timing Logic Option
3.5.4.2. Fast Input, Output, and Output Enable Registers
3.5.4.3. Programmable Delays
3.5.4.4. Use PLLs to Shift Clock Edges
3.5.4.5. Use Fast Regional Clock Networks and Regional Clocks Networks
3.5.4.6. Spine Clock Limitations
3.5.4.7. Change How Hold Times are Optimized for Devices
3.5.5.1. Optimize Source Code
3.5.5.2. Improving Register-to-Register Timing
3.5.5.3. Physical Synthesis Optimizations
3.5.5.4. Turn Off Extra-Effort Power Optimization Settings
3.5.5.5. Optimize Synthesis for Speed, Not Area
3.5.5.6. Flatten the Hierarchy During Synthesis
3.5.5.7. Set the Synthesis Effort to High
3.5.5.8. Change State Machine Encoding
3.5.5.9. Duplicate Logic for Fan-Out Control
3.5.5.10. Prevent Shift Register Inference
3.5.5.11. Use Other Synthesis Options Available in Your Synthesis Tool
3.5.5.12. Fitter Seed
3.5.5.13. Set Maximum Router Timing Optimization Level
4.2.4.1. Guideline: Optimize Source Code
4.2.4.2. Guideline: Optimize Synthesis for Area, Not Speed
4.2.4.3. Guideline: Restructure Multiplexers
4.2.4.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
4.2.4.5. Guideline: Use Register Packing
4.2.4.6. Guideline: Remove Fitter Constraints
4.2.4.7. Guideline: Flatten the Hierarchy During Synthesis
4.2.4.8. Guideline: Re-target Memory Blocks
4.2.4.9. Guideline: Use Physical Synthesis Options to Reduce Area
4.2.4.10. Guideline: Retarget or Balance DSP Blocks
4.2.4.11. Guideline: Use a Larger Device
4.2.5.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
4.2.5.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
4.2.5.3. Guideline: Increase Router Effort Multiplier
4.2.5.4. Guideline: Remove Fitter Constraints
4.2.5.5. Guideline: Optimize Synthesis for Area, Not Speed
4.2.5.6. Guideline: Optimize Source Code
4.2.5.7. Guideline: Use a Larger Device
5.1.1. Starting the Chip Planner
5.1.2. Chip Planner GUI Components
5.1.3. Viewing Architecture-Specific Design Information
5.1.4. Viewing Available Clock Networks in the Device
5.1.5. Viewing Routing Congestion
5.1.6. Viewing I/O Banks
5.1.7. Viewing High-Speed Serial Interfaces (HSSI)
5.1.8. Viewing the Source and Destination of Placed Nodes
5.1.9. Viewing Fan-In and Fan-Out Connections of Placed Resources
5.1.10. Generating Immediate Fan-In and Fan-Out Connections
5.1.11. Exploring Paths in the Chip Planner
5.1.12. Viewing Assignments in the Chip Planner
5.1.13. Viewing High-Speed and Low-Power Tiles in the Chip Planner
5.1.14. Viewing Design Partition Placement
5.2.1. Attributes of a Logic Lock (Standard) Region
5.2.2. Creating Logic Lock (Standard) Regions
5.2.3. Customizing the Shape of Logic Lock Regions
5.2.4. Placing Logic Lock (Standard) Regions
5.2.5. Placing Device Resources into Logic Lock (Standard) Regions
5.2.6. Hierarchical (Parent and Child) Logic Lock (Standard) Regions
5.2.7. Additional Intel® Quartus® Prime Logic Lock (Standard) Design Features
5.2.8. Logic Lock (Standard) Regions Window
5.2.2.1. Creating Logic Lock (Standard) Regions with the Chip Planner
5.2.2.2. Creating Logic Lock (Standard) Regions with the Project Navigator
5.2.2.3. Creating Logic Lock (Standard) Regions with the Logic Lock (Standard) Regions Window
5.2.2.4. Defining Routing Regions
5.2.2.5. Noncontiguous Logic Lock (Standard) Regions
5.2.2.6. Considerations on Using Auto Sized Regions
5.4.1. Initializing and Uninitializing a Logic Lock (Standard) Region
5.4.2. Creating or Modifying Logic Lock (Standard) Regions
5.4.3. Obtaining Logic Lock (Standard) Region Properties
5.4.4. Assigning Logic Lock (Standard) Region Content
5.4.5. Save a Node-Level Netlist for the Entire Design into a Persistent Source File
5.4.6. Setting Logic Lock (Standard) Assignment Priority
5.4.7. Assigning Virtual Pins with a Tcl command
7.1. Engineering Change Orders
7.2. ECO Design Flow
7.3. The Chip Planner Overview
7.4. Performing ECOs with the Chip Planner (Floorplan View)
7.5. Performing ECOs in the Resource Property Editor
7.6. Change Manager
3.77.7. Scripting Support3.77.7. Scripting Support
7.8. Common ECO Applications
7.9. Post ECO Steps
7.10. Engineering Change Orders with the Chip Planner Revision History
Visible to Intel only — GUID: mwh1410471314935
Ixiasoft
5.1.3. Viewing Architecture-Specific Design Information
The Chip Planner allows you to view architecture-specific information related to your design. By enabling the options in the Layers Settings pane, you can view:
- Device routing resources used by your design—View how blocks are connected, as well as the signal routing that connects the blocks.
- LE configuration—View logic element (LE) configuration in your design. For example, you can view which LE inputs are used; whether the LE utilizes the register, the look-up table (LUT), or both; as well as the signal flow through the LE.
- ALM configuration—View ALM configuration in your design. For example, you can view which ALM inputs are used; whether the ALM utilizes the registers, the upper LUT, the lower LUT, or all of them. You can also view the signal flow through the ALM.
- I/O configuration—View device I/O resource usage. For example, you can view which components of the I/O resources are used, whether the delay chain settings are enabled, which I/O standards are set, and the signal flow through the I/O.
- PLL configuration—View phase-locked loop (PLL) configuration in your design. For example, you can view which control signals of the PLL are used with the settings for your PLL.
- Timing—View the delay between the inputs and outputs of FPGA elements. For example, you can analyze the timing of the DATAB input to the COMBOUT output.
In addition, you can modify the following device properties with the Chip Planner:
- LEs and ALMs
- I/O cells
- PLLs
- Registers in RAM and DSP blocks
- Connections between elements
- Placement of elements
For more information about LEs, ALMs, and other resources of an FPGA device, refer to the relevant device handbook.