Visible to Intel only — GUID: sam1403479179728
Ixiasoft
1. Logic Array Blocks and Adaptive Logic Modules in Arria V Devices
2. Embedded Memory Blocks in Arria V Devices
3. Variable Precision DSP Blocks in Arria V Devices
4. Clock Networks and PLLs in Arria V Devices
5. I/O Features in Arria V Devices
6. High-Speed Differential I/O Interfaces and DPA in Arria® V Devices
7. External Memory Interfaces in Arria V Devices
8. Configuration, Design Security, and Remote System Upgrades in Arria V Devices
9. SEU Mitigation for Arria V Devices
10. JTAG Boundary-Scan Testing in Arria V Devices
11. Power Management in Arria V Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Arria V Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Error Correction Code Support
2.11. Embedded Memory Blocks in Arria V Devices Revision History
3.6.1.1. 9 x 9 Independent Multiplier
3.6.1.2. 18 x 18 Independent Multiplier
3.6.1.3. 18 x 18 or 18 x 19 Independent Multiplier
3.6.1.4. 16 x 16 Independent Multiplier or 18 x 18 Independent Partial Multiplier
3.6.1.5. 18 x 25 Independent Multiplier
3.6.1.6. 20 x 24 Independent Multiplier
3.6.1.7. 27 x 27 Independent Multiplier
3.6.1.8. 36 x 18 Independent Multiplier
3.6.1.9. 36-Bit Independent Multiplier
4.2.1. PLL Physical Counters in Arria V Devices
4.2.2. PLL Locations in Arria® V Devices
4.2.3. PLL Migration Guidelines
4.2.4. Fractional PLL Architecture
4.2.5. PLL Cascading
4.2.6. PLL External Clock I/O Pins
4.2.7. PLL Control Signals
4.2.8. Clock Feedback Modes
4.2.9. Clock Multiplication and Division
4.2.10. Programmable Phase Shift
4.2.11. Programmable Duty Cycle
4.2.12. Clock Switchover
4.2.13. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O Resources Per Package for Arria® V Devices
5.2. I/O Vertical Migration for Arria® V Devices
5.3. I/O Standards Support in Arria V Devices
5.4. I/O Design Guidelines for Arria V Devices
5.5. I/O Banks Locations in Arria® V Devices
5.6. I/O Banks Groups in Arria V Devices
5.7. I/O Element Structure in Arria V Devices
5.8. Programmable IOE Features in Arria V Devices
5.9. On-Chip I/O Termination in Arria V Devices
5.10. External I/O Termination for Arria V Devices
5.11. I/O Features in Arria V Devices Revision History
5.4.1. Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards
5.4.2. Guideline: Use the Same VCCPD for All I/O Banks in a Group
5.4.3. Guideline: Ensure Compatible VCCIO and VCCPD Voltage in the Same Bank
5.4.4. Guideline: VREF Pin Restrictions
5.4.5. Guideline: Observe Device Absolute Maximum Rating for 3.3 V Interfacing
5.4.6. Guideline: Use PLL Integer Mode for LVDS Applications
5.4.7. Guideline: Pin Placement for General Purpose High-Speed Signals
5.8.1. Programmable Current Strength
5.8.2. Programmable Output Slew Rate Control
5.8.3. Programmable IOE Delay
5.8.4. Programmable Output Buffer Delay
5.8.5. Programmable Pre-Emphasis
5.8.6. Programmable Differential Output Voltage
5.8.7. Open-Drain Output
5.8.8. Pull-up Resistor
5.8.9. Bus-Hold Circuitry
6.1. Dedicated High-Speed Circuitries in Arria® V Devices
6.2. High-Speed I/O Design Guidelines for Arria® V Devices
6.3. Differential Transmitter in Arria V Devices
6.4. Differential Receiver in Arria V Devices
6.5. Source-Synchronous Timing Budget
6.6. High-Speed Differential I/O Interfaces and DPA in Arria® V Devices Revision History
7.4.1. UniPHY IP
7.4.2. External Memory Interface Datapath
7.4.3. DQS Phase-Shift Circuitry
7.4.4. Phase Offset Control for Arria® V GZ Devices
7.4.5. PHY Clock (PHYCLK) Networks
7.4.6. DQS Logic Block
7.4.7. Leveling Circuitry for Arria V GZ Devices
7.4.8. Dynamic OCT Control
7.4.9. IOE Registers
7.4.10. Delay Chains
7.4.11. I/O and DQS Configuration Blocks
7.5.1. Features of the Hard Memory Controller
7.5.2. Multi-Port Front End
7.5.3. Bonding Support
7.5.4. Hard Memory Controller Width for Arria V GX
7.5.5. Hard Memory Controller Width for Arria V GT
7.5.6. Hard Memory Controller Width for Arria V SX
7.5.7. Hard Memory Controller Width for Arria V ST
8.1. Enhanced Configuration and Configuration via Protocol
8.2. MSEL Pin Settings
8.3. Configuration Sequence
8.4. Configuration Timing Waveforms
8.5. Device Configuration Pins
8.6. Fast Passive Parallel Configuration
8.7. Active Serial Configuration
8.8. Using EPCS and EPCQ Devices
8.9. Passive Serial Configuration
8.10. JTAG Configuration
8.11. Configuration Data Compression
8.12. Remote System Upgrades
8.13. Design Security
8.14. Configuration, Design Security, and Remote System Upgrades in Arria V Devices Revision History
10.1. BST Operation Control
10.2. I/O Voltage for JTAG Operation
10.3. Performing BST
10.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
10.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
10.6. IEEE Std. 1149.1 Boundary-Scan Register
10.7. IEEE Std. 1149.6 Boundary-Scan Register
10.8. JTAG Boundary-Scan Testing inArria V Devices Revision History
11.1. Power Consumption
11.2. Programmable Power Technology
11.3. Temperature Sensing Diode
11.4. Hot-Socketing Feature
11.5. Hot-Socketing Implementation
11.6. Arria V GX, GT, SX, and ST Power-Up Sequence
11.7. Arria V GZ Power-Up Sequence
11.8. Power-On Reset Circuitry
11.9. Power Management in Arria V Devices Revision History
Visible to Intel only — GUID: sam1403479179728
Ixiasoft
9.5.3. Error Detection Registers
This section describes the registers used in user mode.
Figure 216. Block Diagram for Error Detection in User ModeThe block diagram shows the registers and data flow in user mode.
Name | Width (Bits) | Description |
---|---|---|
Syndrome register | 32 | Contains the 32-bit CRC signature calculated for the current frame. If the CRC value is 0, the CRC_ERROR pin is driven low to indicate no error. Otherwise, the pin is pulled high. |
Error message register (EMR) | 67 | Contains error details for single-bit and double-adjacent errors. The error detection circuitry updates this register each time the circuitry detects an error. The Error Message Register Map figure shows the fields in this register and the Error Type in EMR table lists the possible error types. |
JTAG update register | 67 | This register is automatically updated with the contents of the EMR one clock cycle after the content of this register is validated. The JTAG update register includes a clock enable, which must be asserted before its contents are written to the JTAG shift register. This requirement ensures that the JTAG update register is not overwritten when its contents are being read by the JTAG shift register. |
JTAG shift register | 67 | This register allows you to access the contents of the JTAG update register via the JTAG interface using the SHIFT_EDERROR_REG JTAG instruction. |
User update register | 67 | This register is automatically updated with the contents of the EMR one clock cycle after the contents of this register are validated. The user update register includes a clock enable, which must be asserted before its contents are written to the user shift register. This requirement ensures that the user update register is not overwritten when its contents are being read by the user shift register. |
User shift register | 67 | This register allows user logic to access the contents of the user update register via the core interface. |
JTAG fault injection register | 46 | You can use this register with the EDERROR_INJECT JTAG instruction to inject errors in the bitstream. The JTAG Fault Injection Register Map table lists the fields in this register. |
Fault injection register | 46 | This register is updated with the contents of the JTAG fault injection register. |
Figure 217. Error Message Register Map
Error Type | Description | |||
---|---|---|---|---|
Bit 3 | Bit 2 | Bit 1 | Bit 0 | |
0 | 0 | 0 | 0 | No CRC error. |
0 | 0 | 0 | 1 | Location of a single-bit error is identified. |
0 | 0 | 1 | 0 | Location of a double-adjacent error is identified. |
1 | 1 | 1 | 1 | Error types other than single-bit and double-adjacent errors. |
Field Name | Bit Range | Description | |||||||
---|---|---|---|---|---|---|---|---|---|
Error Byte Value | 31:0 | Contains the location of the bit error that corresponds to the error injection type to this field. | |||||||
Byte Location | 41:32 | Contains the location of the injected error in the first data frame. | |||||||
Error Type | 45:42 | Specifies the following error types. | |||||||
Bit 45 | Bit 44 | Bit 43 | Bit 42 | ||||||
0 | 0 | 0 | 0 | No error | |||||
0 | 0 | 0 | 1 | Single-bit error | |||||
0 | 0 | 1 | 0 | Double adjacent error |