Stratix® V Device Handbook: Volume 1: Device Interfaces and Integration
ID
683665
Date
10/18/2023
Public
1. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices
2. Embedded Memory Blocks in Stratix V Devices
3. Variable Precision DSP Blocks in Stratix V Devices
4. Clock Networks and PLLs in Stratix V Devices
5. I/O Features in Stratix V Devices
6. High-Speed Differential I/O Interfaces and DPA in Stratix® V Devices
7. External Memory Interfaces in Stratix V Devices
8. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices
9. SEU Mitigation for Stratix V Devices
10. JTAG Boundary-Scan Testing in Stratix V Devices
11. Power Management in Stratix V Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Stratix V Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Asynchronous Clear
2.11. Memory Blocks Error Correction Code Support
2.12. Embedded Memory Blocks in Stratix V Devices Revision History
4.2.1. PLL Physical Counters in Stratix V Devices
4.2.2. PLL Locations in Stratix® V Devices
4.2.3. PLL Migration Guidelines
4.2.4. Fractional PLL Architecture
4.2.5. PLL Cascading
4.2.6. PLL External Clock I/O Pins
4.2.7. PLL Control Signals
4.2.8. Clock Feedback Modes
4.2.9. Clock Multiplication and Division
4.2.10. Programmable Phase Shift
4.2.11. Programmable Duty Cycle
4.2.12. Clock Switchover
4.2.13. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O Standards Support in Stratix V Devices
5.2. I/O Design Guidelines for Stratix V Devices
5.3. I/O Banks in Stratix® V Devices
5.4. I/O Banks Groups in Stratix V Devices
5.5. I/O Element Structure in Stratix V Devices
5.6. Programmable IOE Features in Stratix® V Devices
5.7. On-Chip I/O Termination in Stratix® V Devices
5.8. I/O Termination Schemes for Stratix® V Devices
5.9. I/O Features in Stratix V Devices Revision History
5.6.1. Programmable Current Strength
5.6.2. Programmable Output Slew Rate Control
5.6.3. Programmable IOE Delay
5.6.4. Programmable Output Buffer Delay
5.6.5. Programmable Pre-Emphasis
5.6.6. Programmable Differential Output Voltage
5.6.7. Open-Drain Output
5.6.8. Bus-Hold Circuitry
5.6.9. Pull-up Resistor
5.7.1. RS OCT without Calibration in Stratix® V Devices
5.7.2. RS OCT with Calibration in Stratix® V Devices
5.7.3. RT OCT with Calibration in Stratix® V Devices
5.7.4. Dynamic OCT in Stratix® V Devices
5.7.5. LVDS Input RD OCT in Stratix V Devices
5.7.6. OCT Calibration Block in Stratix V Devices
5.7.7. OCT Calibration in Power-Up Mode
5.7.8. OCT Calibration in User Mode
6.1. Dedicated High-Speed Circuitries in Stratix® V Devices
6.2. High-Speed I/O Design Guidelines for Stratix® V Devices
6.3. Differential Transmitter in Stratix V Devices
6.4. Differential Receiver in Stratix V Devices
6.5. Source-Synchronous Timing Budget
6.6. High-Speed Differential I/O Interfaces and DPA in Stratix® V Devices Revision History
7.3.1. UniPHY IP
7.3.2. External Memory Interface Datapath
7.3.3. DQS Phase-Shift Circuitry
7.3.4. Phase Offset Control
7.3.5. PHY Clock (PHYCLK) Networks
7.3.6. DQS Logic Block
7.3.7. Leveling Circuitry
7.3.8. Dynamic OCT Control
7.3.9. IOE Registers
7.3.10. Delay Chains
7.3.11. I/O and DQS Configuration Blocks
8.1. Enhanced Configuration and Configuration via Protocol
8.2. MSEL Pin Settings
8.3. Configuration Sequence
8.4. Configuration Timing Waveforms
8.5. Device Configuration Pins
8.6. Fast Passive Parallel Configuration
8.7. Active Serial Configuration
8.8. Using EPCS and EPCQ Devices
8.9. Passive Serial Configuration
8.10. JTAG Configuration
8.11. Configuration Data Compression
8.12. Remote System Upgrades
8.13. Design Security
8.14. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Revision History
10.1. BST Operation Control
10.2. I/O Voltage for JTAG Operation
10.3. Performing BST
10.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
10.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
10.6. IEEE Std. 1149.1 Boundary-Scan Register
10.7. IEEE Std. 1149.6 Boundary-Scan Register
10.8. JTAG Boundary-Scan Testing inStratix V Devices Revision History
5.8.2.3. Emulated LVDS, RSDS, and Mini-LVDS Termination
The I/O banks also support emulated LVDS, RSDS, and mini-LVDS I/O standards.
Emulated LVDS, RSDS and mini-LVDS output buffers use two single-ended output buffers with an external three-resistor network, and can be tri-stated.
Figure 107. Emulated LVDS, RSDS, or Mini-LVDS I/O Standard TerminationThe output buffers, as shown in this figure, are available in all I/O banks. For LVDS output with a three-resistor network, RS is 120 Ω and RP is 170 Ω. For RSDS and Mini-LVDS output, RS and RP values are pending characterization.
To meet the RSDS or mini-LVDS specifications, you require a resistor network to attenuate the output-voltage swing.
You can modify the three-resistor network values to reduce power or improve the noise margin. Choose resistor values that satisfy the following equation.
Figure 108. Resistor Network Calculation
Note: Altera recommends that you perform additional simulations with IBIS or SPICE models to validate that the custom resistor values meet the RSDS or mini-LVDS I/O standard requirements.
For information about the data rates supported for external three-resistor network, refer to the device datasheet.