1. Introduction to the Intel Agilex® 7 Device Design Guidelines
2. System Specification
3. Device Selection
4. Security Considerations
5. Design Entry
6. Board and Software Considerations
7. Design Implementation, Analysis, Optimization, and Verification
8. Debugging
9. Embedded Software Design Guidelines for Intel Agilex® 7 SoC FPGAs
5.1.1. Firewall Planning
5.1.2. Boot And Configuration Considerations
5.1.3. HPS Clocking and Reset Design Considerations
5.1.4. Reset Configuration
5.1.5. HPS Pin Multiplexing Design Considerations
5.1.6. HPS I/O Settings: Constraints and Drive Strengths
5.1.7. Design Guidelines for HPS Interfaces
5.1.8. Interfacing between the FPGA and HPS
5.1.9. Implementing the Intel Agilex® 7 HPS Component
7.1. Selecting a Synthesis Tool
7.2. Device Resource Utilization Reports
7.3. Intel® Quartus® Prime Messages
7.4. Timing Constraints and Analysis
7.5. Area and Timing Optimization
7.6. Preserving Performance and Reducing Compilation Time
7.7. Designing with Intel® Hyperflex™
7.8. Simulation
7.9. Power Analysis
7.10. Power Optimization
7.11. Design Implementation, Analysis, Optimization, and Verification Revision History
9.1. Overview
9.2. Golden Hardware Reference Design (GHRD)
9.3. Define Software Requirements
9.4. Define Software Architecture
9.5. Selecting Software Tools
9.6. Choosing the Bootloader Software
9.7. Selecting an Operating System for Your Application
9.8. Assembling Your Software Development Platform for Linux*
9.9. Assembling your Software Development Platform for Partner OS or RTOS
9.10. Driver Considerations
9.11. Boot And Configuration Considerations
9.12. System Reset Considerations
9.13. Flash Considerations
9.14. Develop Application
9.15. Test and Validate
9.16. Embedded Software Design Guidelines Revision History
5.3.1. NoC Architecture Basics
Intel Agilex® 7 M-Series FPGAs have two independent high-bandwidth hard memory NoCs located along the top and bottom edge of the die to interface between customer logic and memory resources. AXI* 4 managers in the FPGA fabric generate read and write transaction requests which are transferred into the hard memory NoC through initiator bridges at the fabric edge. A high-speed network of switches carries these transaction requests horizontally to target bridges which transfer the transaction requests to memory resources in the periphery. Transaction responses follow the same network of bridges and switches in reverse. Additionally, each hard memory NoC has a PLL and SSM to provide clocking and configure the NoC.