1. Introduction to the Intel Agilex® 7 Device Design Guidelines
2. System Specification
3. Device Selection
4. Security Considerations
5. Design Entry
6. Board and Software Considerations
7. Design Implementation, Analysis, Optimization, and Verification
8. Debugging
9. Embedded Software Design Guidelines for Intel Agilex® 7 SoC FPGAs
5.1.1. Firewall Planning
5.1.2. Boot And Configuration Considerations
5.1.3. HPS Clocking and Reset Design Considerations
5.1.4. Reset Configuration
5.1.5. HPS Pin Multiplexing Design Considerations
5.1.6. HPS I/O Settings: Constraints and Drive Strengths
5.1.7. Design Guidelines for HPS Interfaces
5.1.8. Interfacing between the FPGA and HPS
5.1.9. Implementing the Intel Agilex® 7 HPS Component
7.1. Selecting a Synthesis Tool
7.2. Device Resource Utilization Reports
7.3. Intel® Quartus® Prime Messages
7.4. Timing Constraints and Analysis
7.5. Area and Timing Optimization
7.6. Preserving Performance and Reducing Compilation Time
7.7. Designing with Intel® Hyperflex™
7.8. Simulation
7.9. Power Analysis
7.10. Power Optimization
7.11. Design Implementation, Analysis, Optimization, and Verification Revision History
9.1. Overview
9.2. Golden Hardware Reference Design (GHRD)
9.3. Define Software Requirements
9.4. Define Software Architecture
9.5. Selecting Software Tools
9.6. Choosing the Bootloader Software
9.7. Selecting an Operating System for Your Application
9.8. Assembling Your Software Development Platform for Linux*
9.9. Assembling your Software Development Platform for Partner OS or RTOS
9.10. Driver Considerations
9.11. Boot And Configuration Considerations
9.12. System Reset Considerations
9.13. Flash Considerations
9.14. Develop Application
9.15. Test and Validate
9.16. Embedded Software Design Guidelines Revision History
5.1.8.1.3. FPGA-to-HPS Bridge
GUIDELINE: Use the FPGA-to-HPS bridge for cache coherent memory accesses to the CCU or non-cacheable accesses to the HPS SDRAM from masters in the FPGA.
The FPGA-to-HPS bridge provides access to the peripherals in the HPS or access to the HPS SDRAM from the FPGA. This access is available to any master implemented in the FPGA fabric. You can configure the bridge slave, which is exposed to the FPGA fabric, to support the ACE*-Lite protocol, with a data width of 128, 256, and 512 bits.
For more information about the ACE-Lite protocol extensions for cache coherent transactions, refer to the AMBA* AXI and ACE Protocol Specification on the Arm* Developer website.
Related Information