Visible to Intel only — GUID: vbe1708719437671
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory Mapped Interface Signals
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Run-time Reset Sequence—TX
3.8.5. Run-time Reset Sequence—RX
3.8.6. Run-time Reset Sequence—TX + RX
3.8.7. Run-time Reset Sequence—TX with FEC
3.8.8. RX Data Loss/CDR Lock Loss (Auto-Recovery)
3.8.9. TX PLL Lock Loss
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: vbe1708719437671
Ixiasoft
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
To enable debugging capabilities, you must enable the Avalon® memory-mapped interface parameters in the GTS PMA/FEC Direct PHY Intel FPGA IP.
You can either activate these settings when you first instantiate the IP or modify the instances after preliminary compilation. Follow these steps to enable the settings:- In the IP Components tab of the Project Navigator, right click the IP instance, and select Edit in Parameter Editor.
- Enable the Avalon® Memory-Mapped Interface, Direct PHY soft CSR, and Debug Endpoint on Avalon® Interface options under the Avalon® Memory-Mapped Interface tab as shown in the following figure.
Figure 86. Parameters to Enable Transceiver Toolkit in GTS PMA/FEC Direct PHY Intel FPGA IPNote: You must enable the Enable readdatavalid port on Avalon interface option in the current Quartus® Prime Pro Edition software release in order to bring up the Transceiver Toolkit. This issue is planned to be fixed in a future release.
- Connect the reference signals that the debugging logic requires, if applicable. The debug endpoint requires clock and reset signal connections. For details on how to connect these signals, refer to Configuring the GTS PMA/FEC Direct PHY FPGA IP for Hardware Testing.
- Click Generate HDL. After enabling parameters for all the IP instances in the design, recompile the project.