Arria® 10 and Cyclone® 10 GX Avalon® Streaming Interface for PCI Express* User Guide
ID
683647
Date
9/11/2024
Public
1. Datasheet
2. Quick Start Guide
3. Arria® 10 or Cyclone® 10 GX Parameter Settings
4. Physical Layout
5. Interfaces and Signal Descriptions
6. Registers
7. Reset and Clocks
8. Interrupts
9. Error Handling
10. PCI Express Protocol Stack
11. Transaction Layer Protocol (TLP) Details
12. Throughput Optimization
13. Design Implementation
14. Additional Features
15. Hard IP Reconfiguration
16. Testbench and Design Example
17. Debugging
A. Transaction Layer Packet (TLP) Header Formats
B. Lane Initialization and Reversal
C. Arria® 10 or Cyclone® 10 GX Avalon-ST Interface for PCIe Solutions User Guide Archive
D. Document Revision History
3.1. Parameters
3.2. Arria® 10 or Cyclone® 10 GX Avalon-ST Settings
3.3. Base Address Register (BAR) and Expansion ROM Settings
3.4. Base and Limit Registers for Root Ports
3.5. Device Identification Registers
3.6. PCI Express and PCI Capabilities Parameters
3.7. Vendor Specific Extended Capability (VSEC)
3.8. Configuration, Debug, and Extension Options
3.9. PHY Characteristics
3.10. Example Designs
5.1. Avalon‑ST RX Interface
5.2. Avalon-ST TX Interface
5.3. Clock Signals
5.4. Reset, Status, and Link Training Signals
5.5. ECRC Forwarding
5.6. Error Signals
5.7. Interrupts for Endpoints
5.8. Interrupts for Root Ports
5.9. Completion Side Band Signals
5.10. Parity Signals
5.11. LMI Signals
5.12. Transaction Layer Configuration Space Signals
5.13. Hard IP Reconfiguration Interface
5.14. Power Management Signals
5.15. Physical Layer Interface Signals
5.1.1. Avalon-ST RX Component Specific Signals
5.1.2. Data Alignment and Timing for the 64‑Bit Avalon® -ST RX Interface
5.1.3. Data Alignment and Timing for the 128‑Bit Avalon‑ST RX Interface
5.1.4. Data Alignment and Timing for 256‑Bit Avalon‑ST RX Interface
5.1.5. Tradeoffs to Consider when Enabling Multiple Packets per Cycle
5.2.1. Avalon-ST Packets to PCI Express TLPs
5.2.2. Data Alignment and Timing for the 64‑Bit Avalon-ST TX Interface
5.2.3. Data Alignment and Timing for the 128‑Bit Avalon‑ST TX Interface
5.2.4. Data Alignment and Timing for the 256‑Bit Avalon‑ST TX Interface
5.2.5. Root Port Mode Configuration Requests
16.4.1. ebfm_barwr Procedure
16.4.2. ebfm_barwr_imm Procedure
16.4.3. ebfm_barrd_wait Procedure
16.4.4. ebfm_barrd_nowt Procedure
16.4.5. ebfm_cfgwr_imm_wait Procedure
16.4.6. ebfm_cfgwr_imm_nowt Procedure
16.4.7. ebfm_cfgrd_wait Procedure
16.4.8. ebfm_cfgrd_nowt Procedure
16.4.9. BFM Configuration Procedures
16.4.10. BFM Shared Memory Access Procedures
16.4.11. BFM Log and Message Procedures
16.4.12. Verilog HDL Formatting Functions
7.1. Reset Sequence for Hard IP for PCI Express IP Core and Application Layer
Use the reset_status output of the Hard IP to drive the reset of your Application Layer logic.
After pin_perst or npor is released, the Hard IP reset controller deasserts reset_status. Your Application Layer logic can then come out of reset and become operational.
Figure 82. RX Transceiver Reset Sequence
The RX transceiver reset sequence includes the following steps:
- After rx_pll_locked is asserted, the LTSSM state machine transitions from the Detect.Quiet to the Detect.Active state.
- When the pipe_phystatus pulse is asserted and pipe_rxstatus[2:0] = 3, the receiver detect operation has completed.
- The LTSSM state machine transitions from the Detect.Active state to the Polling.Active state.
- The Hard IP for PCI Express asserts rx_digitalreset. The rx_digitalreset signal is deasserted after rx_signaldetect is stable for a minimum of 3 ms.
Figure 83. TX Transceiver Reset Sequence
The TX transceiver reset sequence includes the following steps:
- After npor is deasserted, the IP core deasserts the npor_serdes input to the TX transceiver.
- The SERDES reset controller waits for pll_locked to be stable for a minimum of 127 pld_clk cycles before deasserting tx_digitalreset.
For descriptions of the available reset signals, refer to Reset Signals, Status, and Link Training Signals.
Related Information