Visible to Intel only — GUID: nik1410564924790
Ixiasoft
1. Datasheet
2. Quick Start Guide
3. Parameter Settings
4. Physical Layout
5. 64- or 128-Bit Avalon-MM Interface to the Endpoint Application Layer
6. Registers
7. Reset and Clocks
8. Interrupts for Endpoints
9. Error Handling
10. Design Implementation
11. Throughput Optimization
12. Additional Features
13. Avalon-MM Testbench and Design Example
14. Avalon-MM Testbench and Design Example for Root Port
15. Hard IP Reconfiguration
16. Debugging
A. PCI Express Protocol Stack
B. Transaction Layer Packet (TLP) Header Formats
C. Lane Initialization and Reversal
D. Arria® 10 or Cyclone® 10 GX Avalon® -MM Interface for PCIe* Solutions User Guide Archive
E. Document Revision History
1.1. Arria® 10 or Cyclone® 10 GX Avalon-MM Interface for PCIe Datasheet
1.2. Features
1.3. Release Information
1.4. Device Family Support
1.5. Configurations
1.6. Design Examples
1.7. IP Core Verification
1.8. Resource Utilization
1.9. Recommended Speed Grades
1.10. Creating a Design for PCI Express
3.1. Parameters
3.2. Avalon-MM Settings
3.3. Base Address Register (BAR) Settings
3.4. Device Identification Registers
3.5. PCI Express and PCI Capabilities Parameters
3.6. Configuration, Debug, and Extension Options
3.7. Vendor Specific Extended Capability (VSEC)
3.8. PHY Characteristics
3.9. Example Designs
5.1. 32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
5.2. Bursting and Non-Bursting Avalon® -MM Module Signals
5.3. 64- or 128-Bit Bursting TX Avalon-MM Slave Signals
5.4. Clock Signals
5.5. Reset, Status, and Link Training Signals
5.6. Interrupts for Endpoints when Multiple MSI/MSI-X Support Is Enabled
5.7. Hard IP Status Signals
5.8. Physical Layer Interface Signals
6.1. Correspondence between Configuration Space Registers and the PCIe Specification
6.2. Type 0 Configuration Space Registers
6.3. Type 1 Configuration Space Registers
6.4. PCI Express Capability Structures
6.5. Intel-Defined VSEC Registers
6.6. CvP Registers
6.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
6.8. Programming Model for Avalon-MM Root Port
6.9. Uncorrectable Internal Error Mask Register
6.10. Uncorrectable Internal Error Status Register
6.11. Correctable Internal Error Mask Register
6.12. Correctable Internal Error Status Register
6.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
6.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
6.7.1.3. PCI Express Mailbox Registers
6.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
6.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
6.7.1.6. Avalon-MM Mailbox Registers
6.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
13.5.1. ebfm_barwr Procedure
13.5.2. ebfm_barwr_imm Procedure
13.5.3. ebfm_barrd_wait Procedure
13.5.4. ebfm_barrd_nowt Procedure
13.5.5. ebfm_cfgwr_imm_wait Procedure
13.5.6. ebfm_cfgwr_imm_nowt Procedure
13.5.7. ebfm_cfgrd_wait Procedure
13.5.8. ebfm_cfgrd_nowt Procedure
13.5.9. BFM Configuration Procedures
13.5.10. BFM Shared Memory Access Procedures
13.5.11. BFM Log and Message Procedures
13.5.12. Verilog HDL Formatting Functions
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: nik1410564924790
Ixiasoft
6.8.2. Sending a Read TLP or Receiving a Non-Posted Completion TLP
The TLPs associated with the Non-Posted TX requests are stored in the RP_RX_CPL FIFO buffer and subsequently loaded into RP_RXCPL registers. The Application Layer performs the following sequence to retrieve the TLP.
- Polls the RP_RXCPL_STA TUS.SOP to determine when it is set to 1’b1.
- Then RP_RXCPL_STATUS.SOP = 1’b’1, reads RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve dword 0 and dword 1 of the TLP.
- Read the RP_RXCPL_STATUS.EOP.
- If RP_RXCPL_STATUS.EOP = 1’b0, read RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve dword 2 and dword 3 of the TLP, then repeat step 3.
- If RP_RXCPL_STATUS.EOP = 1’b1, read RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve final dwords of TLP.