Intel® Quartus® Prime Standard Edition User Guide: Design Recommendations
2.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions
A simple multiply-accumulator consists of a multiplier feeding an addition operator. The addition operator feeds a set of registers that then feeds the second input to the addition operator. A simple multiply-adder consists of two to four multipliers feeding one or two levels of addition, subtraction, or addition/subtraction operators. Addition is always the second-level operator, if it is used. In addition to the multiply-accumulator and multiply-adder, the Intel® Quartus® Prime Fitter also places input and output registers into the DSP blocks to pack registers and improve performance and area utilization.
Some device families offer additional advanced multiply-adder and accumulator functions, such as complex multiplication, input shift register, or larger multiplications.
Verilog HDL Multiply-Accumulator
module sum_of_four_multiply_accumulate
#(parameter INPUT_WIDTH=18, parameter OUTPUT_WIDTH=44)
(
input clk, ena,
input [INPUT_WIDTH-1:0] dataa, datab, datac, datad,
input [INPUT_WIDTH-1:0] datae, dataf, datag, datah,
output reg [OUTPUT_WIDTH-1:0] dataout
);
// Each product can be up to 2*INPUT_WIDTH bits wide.
// The sum of four of these products can be up to 2 bits wider.
wire [2*INPUT_WIDTH+1:0] mult_sum;
// Store the results of the operations on the current inputs
assign mult_sum = (dataa * datab + datac * datad) +
(datae * dataf + datag * datah);
// Store the value of the accumulation
always @ (posedge clk)
begin
if (ena == 1)
begin
dataout <= dataout + mult_sum;
end
end
endmodule
Verilog HDL Signed Multiply-Adder
module sig_altmult_add (dataa, datab, datac, datad, clock, aclr, result);
input signed [15:0] dataa, datab, datac, datad;
input clock, aclr;
output reg signed [32:0] result;
reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
reg signed [31:0] mult0_result, mult1_result;
always @ (posedge clock or posedge aclr) begin
if (aclr) begin
dataa_reg <= 16'b0;
datab_reg <= 16'b0;
datac_reg <= 16'b0;
datad_reg <= 16'b0;
mult0_result <= 32'b0;
mult1_result <= 32'b0;
result <= 33'b0;
end
else begin
dataa_reg <= dataa;
datab_reg <= datab;
datac_reg <= datac;
datad_reg <= datad;
mult0_result <= dataa_reg * datab_reg;
mult1_result <= datac_reg * datad_reg;
result <= mult0_result + mult1_result;
end
end
endmodule
VHDL Signed Multiply-Accumulator
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY sig_altmult_accum IS
PORT (
a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)
) ;
END sig_altmult_accum;
ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = '1') then
a_reg <= (others => '0');
b_reg <= (others => '0');
pdt_reg <= (others => '0');
adder_out <= (others => '0');
ELSIF (rising_edge(clk)) THEN
a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;
END IF;
END process;
accum_out <= adder_out;
END rtl;
VHDL Unsigned Multiply-Adder
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY unsignedmult_add IS
PORT (
a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsignedmult_add;
ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');
result_reg <= (OTHERS => '0');
ELSIF (rising_edge(clk)) THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;
END IF;
END PROCESS;
result <= result_reg;
END rtl;