Visible to Intel only — GUID: ftl1551842156707
Ixiasoft
2.1. Host-to- Intel® Stratix® 10 FPGA Communication over PCIe®
2.2. DDR4 as Global Memory for OpenCL Applications
2.3. Host Connection to OpenCL Kernels
2.4. Partial Reconfiguration
2.5. Other Components in the Reference Design
2.6. Intel® Stratix® 10 FPGA System Design
2.7. Guaranteed Timing Closure of the Intel® Stratix® 10 GX FPGA Development Kit Reference Platform Design
2.8. Intel® FPGA SDK for OpenCL™ Compilation Flows
2.9. Addition of Timing Constraints
2.10. Connection of the Intel® Reference Platform to the Intel® FPGA SDK for OpenCL™
2.11. Intel® Stratix® 10 FPGA Programming Flow
2.12. Implementation of Intel® FPGA SDK for OpenCL™ Utilities
2.13. Considerations in Intel® Stratix® 10 GX FPGA Development Kit Reference Platform Implementation
2.1.1. Instantiation of Intel® Stratix® 10 PCIe* Hard IP with Direct Memory Access
2.1.2. Device Identification Registers for Intel® Stratix® 10 PCIe Hard IP
2.1.3. Instantiation of the version_id Component
2.1.4. Board Support Package Software Layer
2.1.5. Direct Memory Access
2.1.6. Message Signaled Interrupt
2.1.7. Instantiation of board_cade_id_0 Component – JTAG Cable Autodetect Feature
3.1. Initializing Your Intel® Stratix® 10 Custom Platform
3.2. Modifying the Intel® Stratix® 10 GX FPGA Development Kit Reference Platform Design
3.3. Integrating Your Intel® Stratix® 10 Custom Platform with the Intel® FPGA SDK for OpenCL™
3.4. Setting up the Intel® Stratix® 10 Custom Platform Software Development Environment
3.5. Establishing Intel® Stratix® 10 Custom Platform Host Communication
3.6. Branding Your Intel® Stratix® 10 Custom Platform
3.7. Changing the Device Part Number
3.8. Connecting the Memory in the Intel® Stratix® 10 Custom Platform
3.9. Modifying the Kernel PLL Reference Clock
3.10. Integrating an OpenCL Kernel in Your Intel® Stratix® 10 Custom Platform
3.11. Troubleshooting Intel® Stratix® 10 GX FPGA Development Kit Reference Platform Porting Issues
Visible to Intel only — GUID: ftl1551842156707
Ixiasoft
2.4.1. Constant Address Bridge (constant_address_bridge)
The constant address bridge is the simplest block of the BSP design.
It is an IP with AVMM agent and AVMM host, with all wires in between. This means a direct feed-through except that the address is ignored and the AVMM host always outputs address 0 while also outputting a constant 0x1 burst-count. This is important for the PR IP to ensure that the entire PR bitstream is written to the same target address of the PR IP.
Did you find the information on this page useful?
Feedback Message
Characters remaining: