1. Stratix® 10 Variable Precision DSP Blocks Overview
2. Block Architecture Overview
3. Operational Mode Descriptions
4. Design Considerations
5. Stratix® 10 Variable Precision DSP Blocks Implementation Guide
6. Native Fixed Point DSP Stratix® 10 FPGA IP Core References
7. Multiply Adder IP Core References
8. ALTMULT_COMPLEX Intel® FPGA IP Core References
9. LPM_MULT Intel® FPGA IP Core References
10. Native Floating Point DSP Stratix® 10 FPGA IP References
11. LPM_DIVIDE (Divider) Intel FPGA IP Core
12. Stratix® 10 Variable Precision DSP Blocks User Guide Document Archives
13. Document Revision History for the Stratix® 10 Variable Precision DSP Blocks User Guide
2.1. Input Register Bank for Fixed-Point and Floating-Point Arithmetic
2.2. Pipeline Registers for Fixed-Point and Floating-Point Arithmetic
2.3. Pre-adder for Fixed-Point Arithmetic
2.4. Internal Coefficient for Fixed-Point Arithmetic
2.5. Multipliers for Fixed-Point and Floating-Point Arithmetic
2.6. Adder or Subtractor for Fixed-Point and Floating-Point Arithmetic
2.7. Accumulator, Chainout Adder, and Preload Constant for Fixed-Point Arithmetic
2.8. Systolic Register for Fixed-Point Arithmetic
2.9. Double Accumulation Register for Fixed-Point Arithmetic
2.10. Output Register Bank for Fixed-Point and Floating-Point Arithmetic
2.11. Exception Handling for Floating-Point Arithmetic
3.1.5. Systolic FIR Mode
The basic structure of a FIR filter consists of a series of multiplications followed by an addition.
Figure 12. Basic FIR Filter Equation
Depending on the number of taps and the input sizes, the delay through chaining a high number of adders can become quite large. To overcome the delay performance issue, the systolic form is used with additional delay elements placed per tap to increase the performance at the cost of increased latency.
Figure 13. Systolic FIR Filter Equivalent Circuit
Stratix® 10 variable precision DSP blocks support the following systolic FIR structures:
- 18-bit
- 27-bit
In systolic FIR mode, the input of the multiplier can come from four different sets of sources:
- Two dynamic inputs
- One dynamic input and one coefficient input
- One coefficient input and one pre-adder output
- One dynamic input and one pre-adder output