Visible to Intel only — GUID: yip1647583071946
Ixiasoft
1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Intel® Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Configuration and Booting Solutions
5. Nios® V Processor - Using the MicroC/TCP-IP Stack
6. Nios® V Processor Debugging, Verifying, and Simulating
7. Nios® V Processor — Remote System Update
8. Nios® V Processor — Using Custom Instruction
9. Nios® V Embedded Processor Design Handbook Archives
10. Document Revision History for the Nios® V Embedded Processor Design Handbook
4.1. Introduction
4.2. Linking Applications
4.3. Nios® V Processor Booting Methods
4.4. Introduction to Nios® V Processor Booting Methods
4.5. Nios® V Processor Booting from Configuration QSPI Flash
4.6. Nios® V Processor Booting from On-Chip Memory (OCRAM)
4.7. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
4.8. Summary of Nios® V Processor Vector Configuration and BSP Settings
6.5.1. Prerequisites
6.5.2. Setting Up and Generating Your Simulation Environment in Platform Designer
6.5.3. Creating Nios V Processor Software
6.5.4. Generating Memory Initialization File
6.5.5. Generating System Simulation Files
6.5.6. Running Simulation in the QuestaSim Simulator Using Command Line
Visible to Intel only — GUID: yip1647583071946
Ixiasoft
2.3.3. On-Chip Memory Configuration – RAM or ROM
You can configure Intel FPGA On-Chip Memory IPs as RAM or ROM.
- RAM provides read and write capability and has a volatile nature. If you are booting the Nios® V processor from an On-Chip RAM, you must make sure boot content is preserved and not corrupted in the event of a reset during run time.
- If a Nios® V processor is booting from ROM, any software bug on the Nios® V processor cannot erroneously overwrite the contents of On-Chip Memory. Thus, reducing the risk of boot software corruption.