2.2.1. Building Hardware Design in Platform Designer Overview
2.2.2. Building Hardware Design in Platform Designer — Manual Instantiation
2.2.3. Building Hardware Design in Platform Designer — Board-Aware Flow
2.2.4. Building Hardware Design in Platform Designer — Configurable Example Design
2.2.5. Building Software Design with Ashling* RiscFree* IDE for Altera® FPGAs
2.2.2.2.1. Adding Nios® V/m Processor IP
2.2.2.2.2. Adding On-Chip Memory II (RAM or ROM) IP
2.2.2.2.3. Adding JTAG UART IP
2.2.2.2.4. Adding Reset Release IP
2.2.2.2.5. Connect Interfaces and Signals
2.2.2.2.6. Clear System Warnings and Errors
2.2.2.2.7. Configuring the Reset Vector of the Nios® V Processor
2.2.2.2.8. Saving and Generating System HDL
2.2.3.2.1. Adding Nios® V/m Processor IP
2.2.3.2.2. Adding On-Chip Memory (RAM or ROM) IP
2.2.3.2.3. Adding JTAG UART IP
2.2.3.2.4. Adding System ID Peripheral IP
2.2.3.2.5. Adding Reset Release IP
2.2.3.2.6. Connect Interfaces and Signals
2.2.3.2.7. Clear System Warnings and Errors
2.2.3.2.8. Saving and Generating System HDL
3.3. Simulating the Nios® V Processor System
Before experimenting with the designs in actual hardware, Altera recommends you to simulate the whole processor system and evaluate its intended functions. The benefits of simulation is not only for resource utilization but also to protect the actual hardware from unexpected damage due to mishandling within the hardware or software design.