Visible to Intel only — GUID: qvb1683333215823
Ixiasoft
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Intel® Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
Visible to Intel only — GUID: qvb1683333215823
Ixiasoft
3.12.2. FGT PMA Settings
RX on-chip termination:
set_instance_assignment -name HSSI_PARAMETER "rx_onchip_termination=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "rx_onchip_termination=RX_ONCHIP_TERMINATION_R_2" -to rx_serial_data[0] -entity top
Possible parameter values are:
- RX_ONCHIP_TERMINATION_R_1 : 85 Ohms.
- RX_ONCHIP_TERMINATION_R_2 : 100 Ohms.
RX AC coupling:
set_instance_assignment -name HSSI_PARAMETER "rx_ac_couple_enable=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Example:
set_instance_assignment -name HSSI_PARAMETER "rx_ac_couple_enable=ENABLE" -to rx_serial_data[0] -entity top
Possible parameter values are:
-
ENABLE : when you use on board AC coupling capacitors.
-
DISABLE : when you do not use on board AC coupling capacitors.
TX Equalization:
set_instance_assignment -name HSSI_PARAMETER "txeq=<parameter_value>" -to <TX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values:
- main_tap: 0-55
- pre_tap_1: 0-15
- pre_tap_2: 0-7
- post_tap: 0-19
Examples:
set_instance_assignment -name HSSI_PARAMETER "txeq_main_tap=35" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_pre_tap_1=5" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_pre_tap_2=0" -to tx_serial_data[0] -entity top
set_instance_assignment -name HSSI_PARAMETER "txeq_post_tap_1=0" -to tx_serial_data[0] -entity top
Manual Tunning:
Bypass RX Auto Adaptation
set_instance_assignment -name HSSI_PARAMETER "flux_mode=FLUX_MODE_BYPASS" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
set_instance_assignment -name HSSI_PARAMETER "rx_adapt_mode=RX_ADAPT_MODE_STATIC_EQ" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
RX Manual Equalization
- VGA:
set_instance_assignment -name HSSI_PARAMETER "rxeq_vga_gain=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
- High-frequency boost:
set_instance_assignment -name HSSI_PARAMETER "rxeq_hf_boost =<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
- DFE Tap 1:
set_instance_assignment -name HSSI_PARAMETER "rxeq_dfe_data_tap_1=<parameter_value>" -to <RX_SERIAL_PIN> -entity <TOP_LEVEL_NAME>
Valid parameter values are 0-63.
VSR is set when insertion loss < 10dB, RX auto adaptation is ON for >= 23 Gbps NRZ or any PAM4 rate:
-
For Insertion Loss <8dB:
set_instance_assignment -name HSSI_PARAMETER "vsr_mode=VSR_MODE_LOW_LOSS" -to <RX_SERIAL_PIN> -entity < TOP_LEVEL_NAME>
-
For Insertion Loss > 8dB but < 10dB:
set_instance_assignment -name HSSI_PARAMETER "vsr_mode=VSR_MODE_HIGH_LOSS" -to <RX_SERIAL_PIN> -entity < TOP_LEVEL_NAME>
-
Else VSR_MODE_DISABLE is set by default by the Intel® Quartus® Prime Pro Edition software for rates below < 23 Gbps where VSR is not required.