Intel® Quartus® Prime Standard Edition User Guide: PCB Design Tools
ID
683619
Date
9/24/2018
Public
1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
2. Signal Integrity Analysis with Third-Party Tools
3. Mentor Graphics* PCB Design Tools Support
4. Cadence PCB Design Tools Support
5. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software
A. Intel® Quartus® Prime Standard Edition User Guides
1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
1.2. Definitions
1.3. Understanding SSN
1.4. SSN Estimation Tools
1.5. SSN Analysis Overview
1.6. Design Factors Affecting SSN Results
1.7. Optimizing Your Design for SSN Analysis
1.8. Performing SSN Analysis and Viewing Results
1.9. Decreasing Processing Time for SSN Analysis
1.10. Scripting Support
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
1.7.1. Optimizing Pin Placements for Signal Integrity
1.7.2. Specifying Board Trace Model Settings
1.7.3. Defining PCB Layers and PCB Layer Thickness
1.7.4. Specifying Signal Breakout Layers
1.7.5. Creating I/O Assignments
1.7.6. Decreasing Pessimism in SSN Analysis
1.7.7. Excluding Pins as Aggressor Signals
2.1. Signal Integrity Analysis with Third-Party Tools
2.2. I/O Model Selection: IBIS or HSPICE
2.3. FPGA to Board Signal Integrity Analysis Flow
2.4. Simulation with IBIS Models
2.5. Simulation with HSPICE Models
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
2.4.1. Elements of an IBIS Model
2.4.2. Creating Accurate IBIS Models
2.4.3. Design Simulation Using the Mentor Graphics* HyperLynx* Software
2.4.4. Configuring LineSim to Use Intel IBIS Models
2.4.5. Integrating Intel IBIS Models into LineSim Simulations
2.4.6. Running and Interpreting LineSim Simulations
2.5.1. Supported Devices and Signaling
2.5.2. Accessing HSPICE Simulation Kits
2.5.3. The Double Counting Problem in HSPICE Simulations
2.5.4. HSPICE Writer Tool Flow
2.5.5. Running an HSPICE Simulation
2.5.6. Interpreting the Results of an Output Simulation
2.5.7. Interpreting the Results of an Input Simulation
2.5.8. Viewing and Interpreting Tabular Simulation Results
2.5.9. Viewing Graphical Simulation Results
2.5.10. Making Design Adjustments Based on HSPICE Simulations
2.5.11. Sample Input for I/O HSPICE Simulation Deck
2.5.12. Sample Output for I/O HSPICE Simulation Deck
2.5.13. Advanced Topics
2.5.4.1. Applying I/O Assignments
2.5.4.2. Enabling HSPICE Writer
2.5.4.3. Enabling HSPICE Writer Using Assignments
2.5.4.4. Naming Conventions for HSPICE Files
2.5.4.5. Invoking HSPICE Writer
2.5.4.6. Invoking HSPICE Writer from the Command Line
2.5.4.7. Customizing Automatically Generated HSPICE Decks
2.5.12.1. Header Comment
2.5.12.2. Simulation Conditions
2.5.12.3. Simulation Options
2.5.12.4. Constant Definition
2.5.12.5. I/O Buffer Netlist
2.5.12.6. Drive Strength
2.5.12.7. Slew Rate and Delay Chain
2.5.12.8. I/O Buffer Instantiation
2.5.12.9. Board and Trace Termination
2.5.12.10. Double-Counting Compensation Circuitry
2.5.12.11. Simulation Analysis
3.1. FPGA-to-PCB Design Flow
3.2. Integrating with I/O Designer
3.3. Integrating with DxDesigner
3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)
3.5. Scripting API
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
3.2.1. Generating Pin Assignment Files
3.2.2. I/O Designer Settings
3.2.3. Transferring I/O Assignments
3.2.4. Updating I/O Designer with Intel® Quartus® Prime Pin Assignments
3.2.5. Updating Intel® Quartus® Prime with I/O Designer Pin Assignments
3.2.6. Generating Schematic Symbols in I/O Designer
3.2.7. Exporting Schematic Symbols to DxDesigner
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Intel® Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
5.1. Reviewing Intel® Quartus® Prime Software Settings
5.2. Reviewing Device Pin-Out Information in the Fitter Report
5.3. Reviewing Compilation Error and Warning Messages
5.4. Using Additional Intel® Quartus® Prime Software Features
5.5. Using Additional Intel® Quartus® Prime Software Tools
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
4.5.1.1.4. Updating FPGA Symbols
As the design process continues, you must make logic changes in the Intel® Quartus® Prime software, placing signals on different pins after recompiling the design, or use the Intel® Quartus® Prime Pin Planner to make changes manually. The board designer can request such changes to improve the board routing and layout. To ensure signals connect to the correct pins on the FPGA, you must carry forward these types of changes to the circuit schematic and board layout tools. Updating the .pin in the Intel® Quartus® Prime software facilitates this flow.
Figure 35. Updating the FPGA Symbol in the Design Flow
To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool after updating the .pin , follow these steps:
- On the File menu, click Import and Export. The Import and Export wizard appears.
- In the list of actions to perform, select Import ECO - FPGA. Click Next. The Select Source dialog box appears.
- Select the updated source of the FPGA assignment information. In the Vendor list, select Altera. In the PnR Tool list, select quartusII. In the PR File field, click browse to specify the updated .pin in your Intel® Quartus® Prime project directory. Click Next. The Select Destination window appears.
- Select the source component and a destination cell for the updated symbol. To create a new component based on the updated pin assignment data, select Generate Custom Component. Selecting Generate Custom Component replaces the cell listed under the Specify Library and Cell name header with a new, nonfractured cell. You can preserve these edits by selecting Use standard component and select the existing library and cell. Select the destination library for the component and click Next. The Preview of Import Data dialog box appears.
- Make any additional changes to your symbol. Click Next. A list of ECO messages appears summarizing the changes made to the cell. To accept the changes and update the cell, click Finish.
- The main Cadence Allegro PCB Librarian Part Developer window appears. You can edit, fracture, and generate the updated symbols as usual from the main Cadence Allegro PCB Librarian Part Developer window.
Note: If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your PCB Librarian Expert license file, an error message appears in red at the bottom of the message text window of the Part Developer when you select the Import and Export command. To point to your PCB Librarian Expert license, on the File menu, click Change Product, and select the correct product license.
Related Information