Intel® FPGA SDK for OpenCL™ Standard Edition: Best Practices Guide
ID
683176
Date
9/24/2018
Public
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
2.3. Reviewing Loop Information
The High Level Design Report ( <your_kernel_filename>/reports/report.html) file contains information about all the loops in your design and their unroll statuses. This loop analysis report helps you examine whether the is able to maximize the throughput of your kernel .
You can use the loop analysis report to help determine where to deploy one or more of the following pragmas on your loops:
- #pragma unroll
For details about #pragma unroll, see "Unrolling a Loop" in Intel FPGA SDK for OpenCL Standard Edition Programming Guide
- #pragma loop_coalesce
For details about #pragma loop_coalesce, see "Coalescing Nested Loops" in Intel FPGA SDK for OpenCL Standard Edition Programming Guide.
- #pragma ii
For details about #pragma ii, see "Specifying a loop initiation interval (II)" in Intel FPGA SDK for OpenCL Standard Edition Programming Guide.
- Click View reports > Loop Analysis .
- In the analysis pane, select Show fully unrolled loops to obtain information about the loops in your design.
- Consult the flowchart below to identify actions you can take to improve the throughput of your design.
Remember: II refers to the initiation interval of a loop, which is the launch frequency of a new loop iteration. An II value of 1 is ideal; it indicates that the pipeline is functioning at maximum efficiency because the pipeline can process a new loop iteration every clock cycle.