Intel® FPGA SDK for OpenCL™ Standard Edition: Best Practices Guide
ID
683176
Date
9/24/2018
Public
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
5.1.5. Removing Loop-Carried Dependency by Inferring Shift Registers
To enable the to handle single work-item kernels that carry out double precision floating-point operations efficiently, remove loop-carried dependencies by inferring a shift register.
Consider the following kernel:
1 __kernel void double_add_1 (__global double *arr,
2 int N,
3 __global double *result)
4 {
5 double temp_sum = 0;
6
7 for (int i = 0; i < N; ++i)
8 {
9 temp_sum += arr[i];
10 }
11
12 *result = temp_sum;
13 }
The optimization report for kernel unoptimized resembles the following:
==================================================================================
Kernel: double_add_1
==================================================================================
The kernel is compiled for single work-item execution.
Loop Report:
+ Loop "Block1" (file unoptimized5.cl line 7)
Pipelined with successive iterations launched every 11 cycles due to:
Data dependency on variable temp_sum (file unoptimized5.cl line 9)
Largest Critical Path Contributor:
97%: Fadd Operation (file unoptimized5.cl line 9)
The kernel unoptimized is an accumulator that sums the elements of a double precision floating-point array arr[i]. For each loop iteration, the offline compiler takes 11 cycles to compute the result of the addition and then stores it in the variable temp_sum. Each loop iteration requires the value of temp_sum from the previous loop iteration, which creates a data dependency on temp_sum.
To remove the data dependency, infer the array arr[i] as a shift register.
Below is the restructured kernel optimized:
1 //Shift register size must be statically determinable
2 #define II_CYCLES 12
3
4 __kernel void double_add_2 (__global double *arr,
5 int N,
6 __global double *result)
7 {
8 //Create shift register with II_CYCLE+1 elements
9 double shift_reg[II_CYCLES+1];
10
11 //Initialize all elements of the register to 0
12 for (int i = 0; i < II_CYCLES + 1; i++)
13 {
14 shift_reg[i] = 0;
15 }
16
17 //Iterate through every element of input array
18 for(int i = 0; i < N; ++i)
19 {
20 //Load ith element into end of shift register
21 //if N > II_CYCLE, add to shift_reg[0] to preserve values
22 shift_reg[II_CYCLES] = shift_reg[0] + arr[i];
23
24 #pragma unroll
25 //Shift every element of shift register
26 for(int j = 0; j < II_CYCLES; ++j)
27 {
28 shift_reg[j] = shift_reg[j + 1];
29 }
30 }
31
32 //Sum every element of shift register
33 double temp_sum = 0;
34
35 #pragma unroll
36 for(int i = 0; i < II_CYCLES; ++i)
37 {
38 temp_sum += shift_reg[i];
39 }
40
41 *result = temp_sum;
42 }
The following optimization report indicates that the inference of the shift register shift_reg[II_CYCLES] successfully removes the data dependency on the variable temp_sum:
==================================================================================
Kernel: double_add_2
==================================================================================
The kernel is compiled for single work-item execution.
Loop Report:
+ Fully unrolled loop (file optimized5.cl line 12)
Loop was automatically and fully unrolled.
Add "#pragma unroll 1" to prevent automatic unrolling.
+ Loop "Block1" (file optimized5.cl line 18)
| Pipelined well. Successive iterations are launched every cycle.
|
|
|-+ Fully unrolled loop (file optimized5.cl line 26)
Loop was fully unrolled due to "#pragma unroll" annotation.
+ Fully unrolled loop (file optimized5.cl line 36)
Loop was fully unrolled due to "#pragma unroll" annotation.