Intel® FPGA SDK for OpenCL™ Standard Edition: Best Practices Guide
ID
683176
Date
9/24/2018
Public
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
3. OpenCL Kernel Design Best Practices
With the technology, you do not need to change your kernel to fit it optimally into a fixed hardware architecture. Instead, the offline compiler customizes the hardware architecture automatically to accommodate your kernel requirements.
In general, you should optimize a kernel that targets a single compute unit first. After you optimize this compute unit, increase the performance by scaling the hardware to fill the remainder of the FPGA. The hardware footprint of the kernel correlates with the time it takes for hardware compilation. Therefore, the more optimizations you can perform with a smaller footprint (that is, a single compute unit), the more hardware compilations you can perform in a given amount of time.
In addition to data processing and memory access optimizations, consider implementing the following design practices, if applicable, when you create your kernels.
- Transferring Data Via Channels or OpenCL Pipes
Unrolling Loops
Optimizing Floating-Point Operations
Allocating Aligned Memory
Aligning a Struct with or without Padding
Maintaining Similar Structures for Vector Type Elements
Avoiding Pointer Aliasing
Avoid Expensive Functions
Avoiding Work-Item ID-Dependent Backward Branching