Visible to Intel only — GUID: nip1633364712066
Ixiasoft
1. F-tile Overview
2. F-tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. Implementing the F-Tile Global Avalon® Memory-Mapped Interface Intel® FPGA IP
6. F-tile PMA/FEC Direct PHY Design Implementation
7. Supported Tools
8. Debugging F-Tile Transceiver Links
9. F-tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
10. Document Revision History for F-tile Architecture and PMA and FEC Direct PHY IP User Guide
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Intel® Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
6.1. Implementing the F-tile PMA/FEC Direct PHY Design
6.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
6.5. Enabling Custom Cadence Generation Ports and Logic
6.6. Connecting the F-tile PMA/FEC Direct PHY Design IP
6.7. Simulating the F-Tile PMA/FEC Direct PHY Design
6.8. F-tile Interface Planning
Visible to Intel only — GUID: nip1633364712066
Ixiasoft
8.2.5. Running BER Tests
After you create the transceiver links for debugging, you can run BER tests from the Channel Parameters tab:
- In the Collection status table, select the pin for the TX and RX channels you want to test.
- In the Channel Parameters tab, select the PRBS pattern in the TX and RX channels.
- Set the TX Equalization Parameters. Key in the values, click Set Parameters. To load the values, click Get Parameters.
- Click Start in the TX Channel to start the Hard PRBS generator.
- Click TX Reset FGT PMA and RX Reset FGT PMA. This step is only applicable to the FGT PMA.
- Click Start in the RX Channel to start the Hard PRBS checker.
- To stop the test, click Stop in the RX Channel and TX Channel.
- If you want to run another BER test with a different PRBS pattern or TX equalization parameters, repeat steps 2 to 7.
The following figure shows the setup and results for an example BER test for the FGT PMA.
Figure 131. Example BER Test Setup and Results for the FGT PMA
You can set parameters, start PRBS generator, stop PRBS checker or reset across multiple channels simultaneously from the Status Table. Choose the desired channels, right-click, select Edit Parameters or the Action sub-menu.
Note: After changing TX or RX equalization parameters across multiple channels from the Edit Parameters window, you need to right click on the selected channels, select Actions ➤ Receiver or Transmitter ➤ Analog ➤ Set Parameters in order to load in the updated value.