GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
3.3.4. RX Datapath Options
Figure 33. RX Datapath Options in Parameter Editor
Parameter | Values | Description |
---|---|---|
RX PMA Parameters | ||
PRBS monitor mode | disable, PRBS7, PRBS9, PRBS10, PRBS13, PRBS15, PRBS23, PRBS31 |
Enables hard PRBS verifier with the PRBS polynomial selection. Default value is disable. |
Enable rx_cdr_divclk |
On/Off | Enables the port representing RX CDR clock output from RX PMA to the local reference clock pin (set as output) or the CDR clock output pin. Default value is Off. |
RX CDR Settings | ||
Output frequency | Output | Specifies the non editable RX CDR output frequency initial value derived from the IP configuration. |
VCO frequency | Output | Specifies the non editable RX CDR VCO frequency initial value derived from the IP configuration. |
RX CDR reference clock frequency | 25 to 380 MHz | Selects the reference clock frequency (MHz) for CDR. Default value is 156.25 MHz. |
CDR lock mode | auto manual |
When auto is selected, during user initiated reset or power-up, CDR first tries to lock to reference and then locks to data if present. By default, loss of lock to data re-triggers reset RX PMA reset. When manual is selected, you must drive i_rx_set_locktoref to control the CDR lock behavior. If i_rx_set_locktoref is low CDR operates in auto mode, and in lock to reference mode if it is high. When Enable rx_cdr_divclk is enabled, only auto mode is available. Default value is auto. |
Enable rx_set_locktoref port | On/Off | This parameter is valid only when CDR lock mode is set to manual lock to reference. Asserting this signal keeps CDR in lock to reference mode. Deasserting this signal keeps CDR in auto mode. When switching modes, assert reset. Default value is Off |
Enable rx_cdr_fast_freeze_sel port | On/Off | This port is used for GPON. When the PMA configuration rules parameter is set to GPON, you must enable and tie the i_rx_cdr_fast_freeze_sel signal to 1'b0. It ensures that the i_rx_cdr_freeze signal propagates correctly. Default value is Off. |
Enable rx_cdr_freeze port | On/Off | This port is used for GPON. When the PMA configuration rules parameter is set to GPON, you must enable and drive the i_rx_cdr_freeze signal to freeze the CDR lock state during non-active time slots. Default value is Off |