GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
Signal Name | Clocks Domain/Resets | Direction | Description |
---|---|---|---|
o_rx_clkout[(N-1):0] o_rx_clkout2[(N-1):0)] o_tx_clkout[(N-1):0] o_tx_clkout2[(N-1):0] |
N/A | output | Refer to Clock Ports |
i_tx_coreclkin[N-1:0] | N/A | input | The FPGA core clock. Drives the write side of the TX FIFO. |
i_rx_coreclkin[N-1:0] | N/A | input | The FPGA core clock. Drives the read side of the RX FIFO. |
i_tx_pll_refclk_p[N-1:0] | N/A | input | Reference clock for each of the TX PLLs. The local reference clock or the regional reference clock pins must be assigned here. You must ensure that the input reference clock is present, stable and at the configured frequency before you release i_tx_reset. There is no configurable termination setting for the input reference clock. It is always on by default, with a typical differential value of 100 Ω. I/O standard support includes CML and HCSL. |
i_rx_cdr_refclk_p[N-1:0] | N/A | input | Every transceiver bank provides a reference clock input for the RX CDR clock block. The local reference clock or the regional reference clock pins must be assigned here. You must ensure that the input reference clock is present, stable and at the configured frequency before you release i_rx_reset. |
i_system_pll_clk | N/A | input | To be connected to the GTS System PLL Clock IP PLL output. |
o_tx_pll_locked[N-1:0] | asynchronous | output | This signal is to indicate the initial lock to reference clock status of the TXPLL. Once asserted, this signal does not deassert regardless of the lock state of the TX PLL unless the TX channel is reset.
This signal goes high under two conditions:
To check the real time TX PLL lock state, refer to the Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status section.
|
o_rx_cdr_divclk | N/A | output | This is the clock used to bring the recovered clock to an output pin to be used as reference clock. |
o_refclk2core[N-1:0] | N/A | output | Transceiver PLL reference clock that you can route to the FPGA fabric, for example for the HDMI use case. |
i_system_pll_lock | asynchronous | input | System PLL locked signal |