GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
The GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY example design simulation testbench top-level block diagram is shown in the following figure.
Figure 81. Simulation Testbench Block Diagram for the Dynamically Reconfigurable PHY 2 Profile MRIP Example Design
This section provides the functional description of the example design for the two profile MRIP 1 x 10.3125G PMA Direct(P0) to FEC Direct Mode(P1) (System PLL Clocking) example design. In this design, you can dynamically reconfigure the IP between the PMA direct mode and the FEC direct mode.
The GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY example design includes the following components:
- GTS PMA/FEC Direct PHY IP : Generated Reconfigurable PHY IP core.
- GTS Dynamic Reconfiguration Controller IP : Instantiated Dynamic Reconfiguration (DR) controller IP. The GTS Dynamic Reconfiguration Controller IP parameter editor settings align with the transceiver channels, supported profiles, and CSR clock frequency in the GTS PMA/FEC Direct PHY IP. If you generate the example design using the Generate Example Design button in the IP parameter editor, the IP instantiates automatically. If you create your own design example, you must manually instantiate this IP and connect all the I/O ports.
- GTS System PLL Clocks IP : Instantiated System PLL Clocks IP. The GTS System PLL Clocks IP parameter editor settings align with the system PLL frequency in the GTS PMA/FEC Direct PHY IP. If you generate the design example using the Generate Example Design button in the IP parameter editor, the IP instantiates automatically. If you create your own example design, you must manually instantiate this IP and connect all the I/O ports.
- GTS Reset Sequencer IP : Instantiated Reset Sequencer IP. If you generate the design example using the Generate Example Design button in the IP parameter editor, the IP instantiates automatically. If you create your own example design, you must manually instantiate this IP and connect all the I/O ports.
The example design is configured with a 100 MHz clock for reconfiguration, a 156.25 MHz reference clock for the system PLL, and a 156.25 MHz clock for the GTS PMA direct channel, which is used as both the TX PLL and the RX CDR reference clock.
Refer to the GTS Dynamic Reconfiguration Controller IP for details about custom design steps.
Related Information