PHY Lite for Parallel Interfaces Intel® FPGA IP User Guide
ID
683716
Date
1/12/2024
Public
A newer version of this document is available. Customers should click here to go to the newest version.
1. About the PHY Lite for Parallel Interfaces IP
2. PHY Lite for Parallel Interfaces Intel® FPGA IP (phylite_ph2) for Intel Agilex® 7 M-Series Devices
3. PHY Lite for Parallel Interfaces Intel® FPGA IP (altera_phylite_s20) for Intel Agilex® 7 F-Series and I-Series Devices
4. PHY Lite for Parallel Interfaces Intel® FPGA IP for Intel® Stratix® 10 Devices
5. PHY Lite for Parallel Interfaces Intel® FPGA IP for Intel® Arria® 10 and Intel® Cyclone® 10 GX Devices
6. PHY Lite for Parallel Interfaces Intel® FPGA IP User Guide Document Archives
7. Document Revision History for the PHY Lite for Parallel Interfaces Intel® FPGA IP User Guide
3.2.1. Intel Agilex® 7 F-Series and I-Series I/O Sub-bank Interconnects
3.2.2. Intel Agilex® 7 F-Series and I-Series Input DQS/Strobe Tree
3.2.3. PHY Lite for Parallel Interfaces Intel® FPGA IP for Intel Agilex® 7 F-Series and I-Series Devices Top Level Interfaces
3.2.4. Dynamic Reconfiguration
3.2.5. I/O Timing
4.5.6.4.1. Timing Closure: Dynamic Reconfiguration
4.5.6.4.2. Timing Closure: Input Strobe Setup and Hold Delay Constraints
4.5.6.4.3. Timing Closure: Output Strobe Setup and Hold Delay Constraints
4.5.6.4.4. Timing Closure: Non Edge-Aligned Input Data
4.5.6.4.5. I/O Timing Violation
4.5.6.4.6. Internal FPGA Path Timing Violation
5.5.6.4.1. Timing Closure: Dynamic Reconfiguration
5.5.6.4.2. Timing Closure: Input Strobe Setup and Hold Delay Constraints
5.5.6.4.3. Timing Closure: Output Strobe Setup and Hold Delay Constraints
5.5.6.4.4. Timing Closure: Non Edge-Aligned Input Data
5.5.6.4.5. I/O Timing Violation
5.5.6.4.6. Internal FPGA Path Timing Violation
4.5.6.2.1. <variation_name>.sdc
You can find the location of the <variation_name> .sdc file in the .qip or .qsys, which is generated during the IP generation. The <variation_name> .sdc allows the Fitter to optimize timing margins with timing driven compilation and allows the Timing Analyzer to analyze the timing of your design.
The IP uses <variation_name> .sdc for the following operations:
- Creating clocks on PLL inputs
- Creating generated clocks
- Calling derive_clock_uncertainty
- Creating set_output_delay and set_input_delay constraints to analyze the timing of the read and write paths