1.6.1.7.4. RX Path
- Tail bit dropping block—drops padded tail bits in the incoming data (jesd204_rx_link_datain).
- Deassembling block—rearranges the resulting data bits in a specific way according to the mapping scheme (refer to figure).
- Multiplexing block—sends the multiplexed data to the Avalon-ST interface, determined by certain control signals from the RX control block.
Parameter | Description | Value |
---|---|---|
L | Number of lanes per converter device. | 1–8 |
F | Number of octets per frame. | 1, 2, 4, 8 |
CS | Number of control bits per conversion sample. | 0–3 |
N | Number of conversion bits per converter. | 12-16 |
N' | Number of transmitted bits per sample in the user data format. | 16 |
F1_FRAMECLK_DIV | Only applies to cases where F=1. The divider ratio on the frame_clk. The deassembler always uses the post-divided frame_clk (rxframe_clk). 13 |
1, 4 |
F2_FRAMECLK_DIV | Only applies to cases where F=2. The divider ratio on the frame_clk. The deassembler always uses the post-divided frame_clk (rxframe_clk). 13 |
1, 2 |
RECONFIG_EN | Enable reconfiguration support in the transport layer. Only downscaling reconfiguration is supported. Disable the reconfiguration to reduce the logic. | 0, 1 |
OUTPUT_BUS_WIDTH | The data output bus width size that depends on the F and L. bus_width = M*S*N F = (M*S*N_PRIME)/(8*L) M*S = (8*F*L)/N_PRIME Therefore the output bus width = (8*F*L*N)/N_PRIME |
(8*F*L*N)/N_PRIME |
CONTROL_BUS_WIDTH | The control output bus width size. The width depends on the CS parameter as well as the M and S parameters. When CS is 0, the control data is one bit wide (tie the signal to 0). If CS = 0, the bus width = 1. Otherwise, the bus width = (OUTPUT_BUS_WIDTH/N*CS) while OUTPUT_BUS_WIDTH/N = M*S |
OUTPUT_BUS_WIDTH/N*CS |
Signal |
Clock Domain |
Direction |
Description |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control Unit | |||||||||||||
rxlink_clk | — |
Input |
RX link clock signal. This clock is equal to the RX data rate divided by 40. This clock is synchronous to the rxframe_clk signal. | ||||||||||
rxframe_clk | — |
Input |
RX frame clock used by the deassembler. The frequency is a function of parameters F, F1_FRAMECLK_DIV, F2_FRAMECLK_DIV and rxlink_clk. This clock is synchronous to the rxlink_clk signal. |
||||||||||
rxlink_rst_n | rxlink_clk | Input |
Reset for the RX link clock domain logic in the deassembler. This reset is an active low signal and the deassertion is synchronous to the rising-edge of rxlink_clk. | ||||||||||
rxframe_rst_n | rxframe_clk | Input |
Reset for the RX frame clock domain logic in the deassembler. This reset is an active low signal and the deassertion is synchronous to the rising-edge of rxframe_clk. | ||||||||||
Signal |
Clock Domain |
Direction |
Description |
||||||||||
Between Avalon- ST and Transport Layer | |||||||||||||
jesd204_rx_ dataout[(OUTPUT_BUS_WIDTH)-1:0] | rxframe_clk | Output |
RX data to the Avalon-ST source interface. The transport layer arranges the data in a specific order, as illustrated in the cases listed in RX Path Data Remapping section. | ||||||||||
jesd204_rx_controlout[CONTROL_BUS_WIDTH -1:0] | rxframe_clk | Output | RX control data to the Avalon-ST source interface. The transport layer arranges the data in a specific order, as illustrated in the cases listed in RX Path Data Remapping section. | ||||||||||
jesd204_rx_data_valid | rxframe_clk | Output |
Indicates whether the data from the transport layer to the Avalon-ST sink interface is valid or invalid.
|
||||||||||
jesd204_rx_data_ready | rxframe_clk |
Input |
Indicates that the Avalon-ST sink interface is ready to accept data from the transport layer.
|
||||||||||
Signal |
Clock Domain |
Direction |
Description |
||||||||||
Between Transport Layer and DLL | |||||||||||||
jesd204_rx_link_datain[(L*32)-1:0] | rxlink_clk |
Input |
Indicates received data from the DLL to the transport layer, where four octets are packed into a 32-bit data width per lane. The data format is big endian. The table below illustrates the data mapping for L = 4:
Connect this signal to the RX DLL jesd204_rx_link_data[] output pin. |
||||||||||
jesd204_rx_link_data_valid | rxlink_clk |
Input |
Indicates whether the jesd204_rx_link_datain[] is valid or invalid.
Connect this signal to the RX DLL jesd204_rx_link_valid output pin. |
||||||||||
jesd204_rx_link_data_ready | rxframe_clk |
Output |
Indicates that the transport layer is ready to sample jesd204_rx_link_datain[].
Connect this signal to the RX DLL jesd204_rx_link_ready input pin. |
||||||||||
jesd204_rx_link_error | rxlink_clk |
Output |
Indicates an empty data stream due to invalid data. This signal is asserted high to indicate an error at the Avalon-ST sink interface (for example, when jesd204_rx_data_valid = "1" while jesd204_rx_data_ready = "0"). The DLL subsequently reports this error to the CSR block. Connect this signal to the RX DLL jesd204_rx_frame_error input pin. |
||||||||||
Signal |
Clock Domain |
Direction |
Description |
||||||||||
CSR in DLL | |||||||||||||
csr_l[4:0] 14 | mgmt_clk | Input |
Indicates the number of active lanes for the link. This 5-bit bus represents the L value in zero-based binary format. For example, if L = 1, the csr_l[4:0] = "00000". This design example supports the following values:
Runtime reconfiguration supports L fallback. For static configuration, set the maximum L and reconfigure csr_l[] to a smaller value during runtime. This transport layer only supports higher index channels to be powered down. To interleave the de-commision channels, you need to modify the interface connection from the DLL to transport layer. Connect this signal to the RX DLLcsr_l[] output pin. |
||||||||||
csr_f[7:0] 14 | mgmt_clk | Input |
Indicates the number of octets per frame. This 8-bit bus represents the F value in zero-based binary format. For example, if F = 2, the csr_f[7:0] = "00000001". This design example supports the following values:
Connect this signal to the RX DLL csr_f[] output pin. |
||||||||||
csr_n[4:0] 14 | mgmt_clk | Input |
Indicates the converter resolution. This 5-bit bus represents the N value in zero-based binary format. For example, if N = 16, the csr_n[4:0] = "01111". This design example supports the following values:
Connect this signal to the RX DLL csr_n[] output pin. |
RX Path Operation
The data transfer protocol between the Avalon-ST interface and the RX path transport layer is data transfer without backpressure. Therefore, the sink shall always be ready to sample the incoming data whenever data at the source is valid.
Operation:
- Upon the deassertion of the rxframe_rst_n signal, the jesd204_rx_link_data_ready signal from the deassembler to the DLL is asserted at the next rxframe_clk.
- Subsequently, the DLL asserts the jesd204_rx_link_data_valid signal for the deassembler to activate the f2_div1_cnt signal logic and to start sampling the jesd204_rx_link_datain[31:0] signal. 15
- At the following rxframe_clk, the jesd204_rx_data_valid is asserted along with the multiplexed jesd204_rx_dataout[11:0] signal to stream data to the Avalon-ST interface.
- Finally, the DLL deasserts the jesd204_rx_link_data_valid signal when there is no more valid data.
- The deassembler deactivates the f2_div1_cnt signal logic accordingly, and deasserts the jesd204_rx_data_valid at the next rxframe_clk.
RX Data Reception
The MAC layer process the jesd204_rx_dataout signal once the TL asserts the jesd204_rx_data_valid signal. However, there are some data that should be discarded by the upper layer when the you enable the scrambler. This is because the initial unknown seed value within the scrambler can corrupt the very first eight octets, which is the data for the first two link clock cycles. The data can be translated to the frame clock cycle depending on the F and FRAMECLK_DIV parameters selected based on the frame clock to link clock relationship.
RX Path Data Remapping
The RX path data remapping is the reverse of TX path data remapping. Refer to unresolvable-reference.html#bhc1411117018854__fig_gkk_5rc_4rfor the RX transport layer remapping operation.
The following tables show examples of data mapping for L=4, F=1, 2, 4, 8 and M*S=2, 4, 8, 16. The configurations that the transport layer support are not limited to these examples.
F = 1 | ||||
---|---|---|---|---|
Lane | L3 | L2 | L1 | L0 |
Data In | {F12, F13, F14, F15} | {F8, F9, F10, F11} | {F4, F5, F6, F7} | {F0, F1, F2, F3} |
Supported M and S | M*S=2 for F=1, L=4 F=1 supports either (case1: M=1, S=2) or (case2: M=2, S=1) Assuming N=16, M0S0=jesd204_rx_dataout[15:0], M0S1/M1S0= jesd204_rx_dataout[31:16] |
|||
F1_FRAMCLK_DIV=1 | 1st frameclk | cnt=0 : jesd204_rx_dataout[31:0] = {F8F12, F0F4} |
Case1: M=1, S=2 | M0S0=F0F4, M0S1=F8F12 |
Case2: M=2, S=1 | M0S0=F0F4, M1S0=F8F12 | |||
2nd frameclk | cnt=1: jesd204_rx_dataout[31:0] = {F9F13, F1F5} |
Case1: M=1, S=2 | M0S0=F1F5, M0S1=F9F13 | |
Case2: M=2, S=1 | M0S0=F1F5, M1S0=F9F13 | |||
3rd frameclk | cnt=2: jesd204_rx_dataout[31:0] = {F10F114, F2F6} |
Case1: M=1, S=2 | M0S0=F2F6, M0S1=F10F14 | |
Case2: M=2, S=1 | M0S0=F2F6, M1S0=F10F14 | |||
4th frameclk | cnt=3: jesd204_rx_dataout[31:0] = {F11F15, F3F7} |
Case1: M=1, S=2 | M0S0=F3F7, M0S1=F11F15 | |
Case2: M=2, S=1 | M0S0=F3F7, M1S0=F11F15 | |||
F1_FRAMCLK_DIV=4 | jesd204_rx_dataout[127:0] = {{F11F15, F3F7},{F10F114, F2F6},{F9F13, F1F5},{F8F12, F0F4}} |
F = 2 | ||||
---|---|---|---|---|
Lane | L3 | L2 | L1 | L0 |
Data In | {F12, F13, F14, F15} | {F8, F9, F10, F11} | {F4, F5, F6, F7} | {F0, F1, F2, F3} |
Supported M and S | M*S=4 for F=2, L=4 F=2 supports either (case1: M=1, S=4), (case2: M=2, S=2) or (case3: M=4, S=1) |
|||
F2_FRAMCLK_DIV=1 | 1st frameclk | cnt=0: jesd204_rx_dataout[63:0] = {F12F13, F8F9,F4F5, F0F1} |
Case1: M=1, S=4 | M0S0=F0F1, M0S1=F4F5, M0S2=F8F9, M0S3=F12F13 |
Case2: M=2, S=2 | M0S0=F0F1, M0S1=F4F5, M1S0=F8F9, M1S1=F12F13 | |||
Case3: M=4, S=1 | M0S0=F0F1, M1S0=F4F5, M2S0=F8F9, M3S0=F12F13 | |||
2nd frameclk | cnt=1: jesd204_rx_dataout[63:0] = {F14F15, F10F11,F6F7, F2F3} |
Case1: M=1, S=4 | M0S0=F2F3, M0S1=F6F7, M0S2=F10F11, M0S3=F14F15 | |
Case2: M=2, S=2 | M0S0=F2F3, M0S1=F6F7, M1S0=F10F11, M1S1=F14F15 | |||
Case3: M=4, S=1 | M0S0=F2F3, M1S0=F6F7, M2S0=F10F11, M3S0=F14F15 | |||
F2_FRAMCLK_DIV=2 | jesd204_rx_dataout[127:0] = {{F14F15, F10F11,F6F7, F2F3}, {F12F13, F8F9,F4F5, F0F1}} |
F = 4 | ||||
---|---|---|---|---|
Lane | L3 | L2 | L1 | L0 |
Data In | {F12, F13, F14, F15} | {F8, F9, F10, F11} | {F4, F5, F6, F7} | {F0, F1, F2, F3} |
Supported M and S | M*S=8 for F=4, L=4 F=4 supports either (case1: M=1, S=8), (case2: M=2, S=4), (case3: M=4, S=2) or (case4: M=8, S=1) |
|||
F=4 | jesd204_rx_dataout[127:0] = {F14F15, F12F13,F10F11, F8F9,F6F7,F4F5, F2F3,F0F1} |
Case1: M=1, S=8 | {M0S7, M0S6, M0S5, M0S4, M0S3, M0S2, M0S1, M0S0} | |
Case2: M=2, S=4 | {M1S3, M1S2, M1S1, M1S0, M0S3, M0S2, M0S1, M0S0} | |||
Case3: M=4, S=2 | {M3S1, M3S0, M2S1, M2S0, M1S1, M1S0, M0S1, M0S0} | |||
Case4: M=8, S=1 | {M7S0, M6S0, M5S0, M4S0, M3S0, M2S0, M1S0, M0S0} |
F = 8 | ||||
---|---|---|---|---|
Lane | L3 | L2 | L1 | L0 |
Data In linkclk T0 | {F24, F25, F26, F27} | {F16, F17, F18, F19} | {F8, F9, F10, F11} | {F0, F1, F2, F3} |
Data In linkclk T1 | {F28, F29, F30, F31} | {F20, F21, F22, F23} | {F12, F13, F14, F15} | {F4, F5, F6, F7} |
Supported M and S | M*S=16 for F=8, L=4 F=8 supports either (case1: M=1, S=16), (case2: M=2, S=8), (case3: M=4, S=4), (case4: M=8, S=2) or (case5: M=16, S=1) |
|||
F=8 | jesd204_rx_dataout[255:0] = {{F3031, F28F29,F26F27, F24F25},{F22F23, F20F21,F18F19, F16F17},{F14F15, F12F13, F10F11,F8F9}, {F6F7,F4F5, F2F3,F0F1}} |
Case1: M=1, S=16 | {M0S15, M0S14, M0S13, M0S12, M0S11, M0S10, M0S9, M0S8, M0S7, M0S6, M0S5, M0S4, M0S3, M0S2, M0S1, M0S0} |
RX Error Reporting
For RX path error reporting, the transport layer expects the AL to always be ready to sample the RX data (as indicated by the jesd204_rx_data_ready signal equal to "1") as long as the jesd204_rx_data_valid remains asserted. If the jesd204_rx_data_ready signal unexpectedly deasserts, the transport layer reports the error to the DLL by asserting the jesd204_rx_link_error signal, as shown in the timing diagram below.
RX Latency
The RX latency is defined as the time needed to fully transfer a 32-bit data in a lane (jesd204_rx_link_datain*) to the Avalon-ST interface (jesd204_rx_dataout*) when the jesd204_rx_link_data_valid signal equals to "1".
F | FRAMECLK_DIV | RX Latency |
---|---|---|
1 | 1 |
|
1 | 4 | 2 rxframe_clk period |
2 | 1 |
|
2 | 2 | 2 txframe_clk period |
4 | — | 2 txframe_clk period |
8 | — | 2 txframe_clk period |