GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
3.1.1. PMA Direct Supported Modes
The GTS PMA/FEC Direct PHY IP currently supports the following PMA Direct modes:
- NRZ modulation
- Duplex, TX simplex and RX simplex modes for both PMA clocking and system PLL clocking with 8, 10, 16, 20, and 32 data widths.
- Supports x2 and x4 bonding on the TX path
- Supports configurable FIFO modes depending on the PHY configuration: PMA interface FIFO (elastic and register modes) and core interface mode (phase compensation)
Clocking Mode | Double Width/Single Width Mode 15 | PMA Interface Width | PMA Interface FIFO (TX/RX) | Core Interface FIFO (TX/RX) |
---|---|---|---|---|
System Clocking | DW | 8, 10, 16 ,20,32 | Elastic/Elastic |
Phase Compensation/Phase Compensation |
SW | 8, 10 ,16, 20, 32 | Elastic/Elastic |
Phase Compensation/Phase Compensation |
|
PMA Clocking |
DW | 8, 10, 16, 20, 32 | Register/Register |
Phase Compensation/Phase Compensation |
8, 10, 16, 20, 32 | Register/Register |
Elastic/Phase Compensation |
||
8, 10, 16, 20, 32 | Register/Register |
Phase Compensation/Elastic | ||
8, 10, 16, 20, 32 | Register/Register |
Elastic/Elastic |
||
SW | 8, 10, 16, 20, 32 | Register/Register |
Phase Compensation/Phase Compensation |
|
8, 10, 16, 20, 32 | Register/Register |
Elastic/Phase Compensation |
||
8, 10, 16, 20,32 | Register/Register |
Phase Compensation/Elastic |
||
8, 10, 16, 20, 32 | Register/Register |
Elastic/Elastic |
For multiple lanes and TX deskew function, core interface FIFO must be set to phase compensation mode.
15 The Double width (DW) mode is when the Enable TX/RX double width transfer parameter in the GTS PMA/FEC Direct PHY IP GUI is enabled. When it is enabled, you can clock the FPGA core logic with a half rate clock. Single width (SW) mode is when this parameter is not enabled.