GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
4.1. IP Parameters
The table below lists the IP parameters for the GTS System PLL Clocks IP.
Figure 65. GTS System PLL Clocks IP Parameter Editor
Parameter | Values | Description |
---|---|---|
System PLL | ||
Use case of system PLL | TRANSCEIVER_USE_CASE FABRIC_USE_CASE |
Use case of system PLL. Use the TRANSCEIVER_USE_CASE to supply clock to the transceivers. Use the FABRIC_USE_CASE to supply a clock to the FPGA core fabric. |
Mode of system PLL | User Configuration | Selects the mode of system PLL. Only available when Use case of system PLL is set to TRANSCEIVER_USE_CASE.
Note: The frequency number in the preset labels are abbreviated; they are not the full precise frequencies. Refer to the Preset Reference Clock and Output Frequencies table for the full frequencies.
The default value is ETHERNET_FREQ_322_156. |
User PCIe* -based Configuration | ||
ETHERNET_FREQ_322_156 | ||
ETHERNET_FREQ_322_322 | ||
PCIE_FREQ_250 | ||
PCIE_FREQ_275 | ||
PCIE_FREQ_300 | ||
PCIE_FREQ_325 | ||
PCIE_FREQ_350 | ||
PCIE_FREQ_375 | ||
PCIE_FREQ_400 | ||
PCIE_FREQ_425 | ||
PCIE_FREQ_450 | ||
PCIE_FREQ_475 | ||
PCIE_FREQ_500 | ||
Refclk frequency | 25.78125 MHz to 380 MHz | Specifies the reference clock frequency. |
Output frequency C0 | 31.25 MHz to 1000 MHz | Specifies the output frequency of the system PLL C0 in MHz. In the background, the algorithm calculates the legal reference clock frequencies for that clock output frequency. For correct calculation, specify the exact frequency with decimal points.
Note: You must ensure that the output frequency of the system PLL and the GTS PMA/FEC Direct PHY IP are set to the same frequency if you are using the system PLL clocking mode.
|
Output frequency C1 enable | On/Off | Only available when Use case of system PLL is set to FABRIC_USE_CASE. When On, there is an output port C1 for FPGA core fabric use. |
Output frequency C1 | 31.25 to 1000 MHz | Specifies the output frequency of the system PLL C1 in MHz. In background, the algorithm calculates all possible C1 output frequencies based on the reference clock selected and the C0 output frequency. Only available when Use case of system PLL is set to FABRIC_USE_CASE. |
Related Information