GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
ID
848344
Date
8/04/2025
Public
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY IP
4. Implementing the GTS System PLL Clocks IP
5. Implementing the GTS Reset Sequencer IP
6. GTS PMA/FEC Direct PHY IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide: Agilex™ 3 FPGAs and SoCs
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY IP
3.3. Configuring the GTS PMA/FEC Direct PHY IP
3.4. Dynamically Reconfigurable PHY
3.5. Signal and Port Reference
3.6. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.7. Clocking
3.8. Custom Cadence Generation Ports and Logic
3.9. Asserting Reset
3.10. Bonding Implementation
3.11. Configuration Register
3.12. Configuring the GTS PMA/FEC Direct PHY IP for Hardware Testing
3.13. Configurable Quartus® Prime Software Settings
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Mode and Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.5.1. TX and RX Parallel and Serial Interface Signals
3.5.2. TX and RX Reference Clock and Clock Output Interface Signals
3.5.3. Reset Signals
3.5.4. FEC Signals
3.5.5. Custom Cadence Control and Status Signals
3.5.6. RX PMA Status Signals
3.5.7. TX and RX PMA and Core Interface FIFO Signals
3.5.8. Avalon Memory-Mapped Interface Signals
3.7.1. Clock Ports
3.7.2. Recommended tx/rx_coreclkin Connection and tx/rx_clkout2 Source
3.7.3. Port Widths and Recommended Connections for tx/rx_coreclkin, tx/rx_clkout, and tx/rx_clkout2
3.7.4. PMA Fractional Mode
3.7.5. Input Reference Clock Buffer Protection
3.7.6. Guidelines for Obtaining the Real-Time GTS TX PLL Lock Status
3.14.2.1. GTS Attribute Access Method Example 1: Enable or Disable Internal Serial Loopback Mode (RX Auto Adaptation Mode)
3.14.2.2. GTS Attribute Access Method Example 2: Enable or Disable Internal Serial Loopback Mode (RX Manual Adaptation Mode)
3.14.2.3. GTS Attribute Access Method Example 3: Enable or Disable Polarity Inversion of the PMA
3.14.2.4. GTS Attribute Access Method Example 4: Enable PRBS Generator and Checker to Run BER Test
6.1. Instantiating the GTS PMA/FEC Direct PHY IP
6.2. Generating the GTS PMA/FEC Direct PHY IP Example Design
6.3. GTS PMA/FEC Direct PHY IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY IP Example Design
6.6. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
6.7. Generating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable Example Design
6.8. GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Functional Description
6.9. Simulating the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design Testbench
6.10. Compiling the GTS PMA/FEC Direct PHY IP Dynamically Reconfigurable PHY Example Design
8.3.1. Modifying the Design to Enable GTS Transceiver Debug Toolkit
8.3.2. Programming the Design into an Altera FPGA
8.3.3. Loading the Design to the Transceiver Toolkit
8.3.4. Creating Transceiver Links
8.3.5. Running BER Tests
8.3.6. Running Eye Viewer Tests
8.3.7. Running Link Optimization Tests
3.11.3.2. Accessing GTS PMA Registers
The following table shows the offset address between lanes that you must add when you want to access the PMA registers for a design with more than one lane. Note that the word address is byte address/4.
GTS Lane Number (Logical Lane) Configured in the GTS PMA/FEC Direct PHY IP | Offset (Byte Address) |
---|---|
0 | 0x000000 |
1 | 0x100000 |
2 | 0x200000 |
3 | 0x300000 |
Example 1: Accessing PMA Physical Lane Information
You can access the logical lane offset address to read out the physical lane information, refer to the GTS_LANE_Number logical lane address (0x0A5000) in the register map file. Add an offset of 0x100000h for each incremental lane, as shown below:
- For Logical Lane 0: 0x0A5000
- For Logical Lane 1: 0x1A5000
- For Logical Lane 2: 0x2A5000
- For Logical Lane 3: 0x3A5000
Note: You can add an incremental offset of 0x100000h to this address to access up to lane 3 (0x3A5000) to read the physical GTS PMA lane information (if you enable 4 GTS PMA lanes in your design per side and do not Enable Separate Avalon interface per PMA feature in the GTS PMA/FEC Direct PHY IP).
Example 2: Accessing PMA Registers for TX Equalization Settings
For example, if you want to update the TX equalizer co-efficients settings for the GTS PMA lanes, refer to the registers 0x09174C and 0x091750 in the register map file and add 0x100000h for each incremental lane, as shown below:
- For Lane 0: 0x09174C and 0x091750
- For Lane 1: 0x19174C and 0x191750
- For Lane 2 : 0x29174C and 0x291750
- For Lane 3 : 0x39174C and 0x391750
Note: You can access each GTS PMA channel’s registers in a bank through the same base address. For the example shown, all lanes use the same base address of 0x09174C and 0x091750.