Embedded Peripherals IP User Guide

ID 683130
Date 8/11/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 3. Avalon® -ST Serial Peripheral Interface Core 4. SPI Core 5. SPI Agent/JTAG to Avalon® Host Bridge Cores 6. Intel eSPI Agent Core 7. eSPI to LPC Bridge Core 8. Ethernet MDIO Core 9. Intel FPGA 16550 Compatible UART Core 10. UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. Intel FPGA Avalon® Compact Flash Core 17. EPCS/EPCQA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller II Core 20. Intel FPGA Generic QUAD SPI Controller Core 21. Intel FPGA Generic QUAD SPI Controller II Core 22. Interval Timer Core 23. Intel FPGA Avalon FIFO Memory Core 24. On-Chip Memory (RAM and ROM) Intel FPGA IP 25. On-Chip Memory II (RAM or ROM) Intel FPGA IP 26. Optrex 16207 LCD Controller Core 27. PIO Core 28. PLL Cores 29. DMA Controller Core 30. Modular Scatter-Gather DMA Core 31. Scatter-Gather DMA Controller Core 32. SDRAM Controller Core 33. Tri-State SDRAM Core 34. Video Sync Generator and Pixel Converter Cores 35. Intel FPGA Interrupt Latency Counter Core 36. Performance Counter Unit Core 37. Vectored Interrupt Controller Core 38. Avalon® -ST Data Pattern Generator and Checker Cores 39. Avalon® -ST Test Pattern Generator and Checker Cores 40. System ID Peripheral Core 41. Avalon® Packets to Transactions Converter Core 42. Avalon® -ST Multiplexer and Demultiplexer Cores 43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP 44. Avalon® -ST Delay Core 45. Avalon® -ST Round Robin Scheduler Core 46. Avalon® -ST Splitter Core 47. Avalon® -MM DDR Memory Half Rate Bridge Core 48. Intel FPGA GMII to RGMII Converter Core 49. HPS GMII to RGMII Adapter Intel® FPGA IP 50. Intel FPGA MII to RMII Converter Core 51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP 55. Altera ACE5-Lite Cache Coherency Translator 56. Lightweight UART Core

32.2.2.2. Synchronizing Clock and Data Signals

The clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency as the clock for the Avalon® memory-mapped interface on the SDRAM controller (controller clock). As in all synchronous designs, ensure that address, data, and control signals at the SDRAM pins are stable when a clock edge arrives. As shown in the above SDRAM Controller with Avalon® Interface block diagram, you can use an on-chip phase-locked loop (PLL) to alleviate clock skew between the SDRAM controller core and the SDRAM chip. At lower clock speeds, the PLL might not be necessary. At higher clock rates, a PLL is necessary to ensure that the SDRAM clock toggles only when signals are stable on the pins. The PLL block is not part of the SDRAM controller core. If a PLL is necessary, instantiate it manually. You can instantiate the PLL core interface or instantiate an ALTPLL IP core outside the Platform Designer system module.

If you use a PLL, tune the PLL to introduce a clock phase shift so that SDRAM clock edges arrive after synchronous signals have stabilized. See Clock, PLL and Timing Considerations sections for details.

For more information about instantiating a PLL, refer to PLL Cores chapter. The Nios® II development tools provide example hardware designs that use the SDRAM controller core in conjunction with a PLL, which you can use as a reference for your custom designs.

The Nios® II development tools are available free for download from the Intel FPGA website.