Embedded Peripherals IP User Guide

ID 683130
Date 8/11/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 3. Avalon® -ST Serial Peripheral Interface Core 4. SPI Core 5. SPI Agent/JTAG to Avalon® Host Bridge Cores 6. Intel eSPI Agent Core 7. eSPI to LPC Bridge Core 8. Ethernet MDIO Core 9. Intel FPGA 16550 Compatible UART Core 10. UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. Intel FPGA Avalon® Compact Flash Core 17. EPCS/EPCQA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller II Core 20. Intel FPGA Generic QUAD SPI Controller Core 21. Intel FPGA Generic QUAD SPI Controller II Core 22. Interval Timer Core 23. Intel FPGA Avalon FIFO Memory Core 24. On-Chip Memory (RAM and ROM) Intel FPGA IP 25. On-Chip Memory II (RAM or ROM) Intel FPGA IP 26. Optrex 16207 LCD Controller Core 27. PIO Core 28. PLL Cores 29. DMA Controller Core 30. Modular Scatter-Gather DMA Core 31. Scatter-Gather DMA Controller Core 32. SDRAM Controller Core 33. Tri-State SDRAM Core 34. Video Sync Generator and Pixel Converter Cores 35. Intel FPGA Interrupt Latency Counter Core 36. Performance Counter Unit Core 37. Vectored Interrupt Controller Core 38. Avalon® -ST Data Pattern Generator and Checker Cores 39. Avalon® -ST Test Pattern Generator and Checker Cores 40. System ID Peripheral Core 41. Avalon® Packets to Transactions Converter Core 42. Avalon® -ST Multiplexer and Demultiplexer Cores 43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP 44. Avalon® -ST Delay Core 45. Avalon® -ST Round Robin Scheduler Core 46. Avalon® -ST Splitter Core 47. Avalon® -MM DDR Memory Half Rate Bridge Core 48. Intel FPGA GMII to RGMII Converter Core 49. HPS GMII to RGMII Adapter Intel® FPGA IP 50. Intel FPGA MII to RMII Converter Core 51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP 55. Altera ACE5-Lite Cache Coherency Translator 56. Lightweight UART Core

9.4.6. mcr

Identifier Title Offset Access Reset Value Description
mcr Modem Control Register 0x10 RW 0x00000000 Reports various operations of the modem signals.
Bit Fields
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
afce loopback out2 out1 rts dtr
Table 77.  mcr Fields Descriptions
Bit Name/Identifier Description Access Reset
[31:6] Reserved R 0x0
[5] Hardware Auto Flow Control Enable ( afce)

When FIFOs are enabled (FCR[0]), the Auto Flow Control enable bits are active. This enabled UART to dynamically assert and deassert rts_n based on Receive FIFO trigger level

RW 0x0
[4] LoopBack Bit (loopback)

This is used to put the UART into a diagnostic mode for test purposes. If UART mode is NOT active, bit [6] of the modem control register MCR is set to zero, data on the sout line is held high, while serial data output is looped back to the sin line, internally. In this mode all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n, out1_n, out2_n) are looped-back to the inputs, internally.

RW 0x0
[3] Out2 (out2)

This is used to directly control the user-designated out2_n output. The value written to this location is inverted and driven out on out2_n

RW 0x0
[2] Out1 (out1)

This is used to directly control the user-designated out1_n output. The value written to this location is inverted and driven out on out1_n pin.

RW 0x0
[1] Request to Send (rts)

This is used to directly control the Request to Send (rts_n) output. The Request to Send (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data. When Auto RTS Flow Control is not enabled (MCR[5] set to zero), the rts_n signal is set low by programming this register to a high. If Auto Flow Control is active (MCR[5] set to 1) and FIFO's enable (FCR[0] set to 1), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal will be de-asserted when this register is set low.

RW 0x0
[0] Data Terminal Ready (dtr)

This is used to directly control the Data Terminal Ready output. The value written to this location is inverted and driven out on uart_dtr_n. The Data Terminal Ready output is used to inform the modem or data set that the UART is ready to establish communications.

RW 0x0