Embedded Peripherals IP User Guide

ID 683130
Date 8/11/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 3. Avalon® -ST Serial Peripheral Interface Core 4. SPI Core 5. SPI Agent/JTAG to Avalon® Host Bridge Cores 6. Intel eSPI Agent Core 7. eSPI to LPC Bridge Core 8. Ethernet MDIO Core 9. Intel FPGA 16550 Compatible UART Core 10. UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. Intel FPGA Avalon® Compact Flash Core 17. EPCS/EPCQA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller II Core 20. Intel FPGA Generic QUAD SPI Controller Core 21. Intel FPGA Generic QUAD SPI Controller II Core 22. Interval Timer Core 23. Intel FPGA Avalon FIFO Memory Core 24. On-Chip Memory (RAM and ROM) Intel FPGA IP 25. On-Chip Memory II (RAM or ROM) Intel FPGA IP 26. Optrex 16207 LCD Controller Core 27. PIO Core 28. PLL Cores 29. DMA Controller Core 30. Modular Scatter-Gather DMA Core 31. Scatter-Gather DMA Controller Core 32. SDRAM Controller Core 33. Tri-State SDRAM Core 34. Video Sync Generator and Pixel Converter Cores 35. Intel FPGA Interrupt Latency Counter Core 36. Performance Counter Unit Core 37. Vectored Interrupt Controller Core 38. Avalon® -ST Data Pattern Generator and Checker Cores 39. Avalon® -ST Test Pattern Generator and Checker Cores 40. System ID Peripheral Core 41. Avalon® Packets to Transactions Converter Core 42. Avalon® -ST Multiplexer and Demultiplexer Cores 43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP 44. Avalon® -ST Delay Core 45. Avalon® -ST Round Robin Scheduler Core 46. Avalon® -ST Splitter Core 47. Avalon® -MM DDR Memory Half Rate Bridge Core 48. Intel FPGA GMII to RGMII Converter Core 49. HPS GMII to RGMII Adapter Intel® FPGA IP 50. Intel FPGA MII to RMII Converter Core 51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP 55. Altera ACE5-Lite Cache Coherency Translator 56. Lightweight UART Core

56.4.4. Data Bits, Stop Bits, Parity

The Lightweight UART core's parity, data bits and stop bits are configurable. These settings are fixed at system generation time; they cannot be altered via the register file.
Table 509.  Data Bits Settings
Setting Legal Values Description
Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and endofpacket registers.
Stop Bits 1, 2

This setting determines whether the core transmits 1 or 2 stop bits with every character. The core always terminates a receive transaction at the first stop bit, and ignores all subsequent stop bits, regardless of this setting.

Parity None, Even, Odd

This setting determines whether the Lightweight UART core transmits characters with parity checking, and whether it expects received characters to have parity checking.

When Parity is set to None, the transmit logic sends data without including a parity bit, and the receive logic presumes the incoming data does not include a parity bit. The PE bit in the status register is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and inserts the required parity bit into the outgoing TXD bitstream, and the receive logic checks the parity bit in the incoming RXD bitstream. If the receiver finds data with incorrect parity, the PE bit in the status register is set to 1.

When Parity is Even, the parity bit is 0, if the character has an even number of 1 bit; otherwise, the parity bit is 1. Similarly, when parity is Odd, the parity bit is 0, if the character has an odd number of 1 bit; otherwise, the parity bit is 1.