Embedded Peripherals IP User Guide

ID 683130
Date 8/11/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 3. Avalon® -ST Serial Peripheral Interface Core 4. SPI Core 5. SPI Agent/JTAG to Avalon® Host Bridge Cores 6. Intel eSPI Agent Core 7. eSPI to LPC Bridge Core 8. Ethernet MDIO Core 9. Intel FPGA 16550 Compatible UART Core 10. UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. Intel FPGA Avalon® Compact Flash Core 17. EPCS/EPCQA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller II Core 20. Intel FPGA Generic QUAD SPI Controller Core 21. Intel FPGA Generic QUAD SPI Controller II Core 22. Interval Timer Core 23. Intel FPGA Avalon FIFO Memory Core 24. On-Chip Memory (RAM and ROM) Intel FPGA IP 25. On-Chip Memory II (RAM or ROM) Intel FPGA IP 26. Optrex 16207 LCD Controller Core 27. PIO Core 28. PLL Cores 29. DMA Controller Core 30. Modular Scatter-Gather DMA Core 31. Scatter-Gather DMA Controller Core 32. SDRAM Controller Core 33. Tri-State SDRAM Core 34. Video Sync Generator and Pixel Converter Cores 35. Intel FPGA Interrupt Latency Counter Core 36. Performance Counter Unit Core 37. Vectored Interrupt Controller Core 38. Avalon® -ST Data Pattern Generator and Checker Cores 39. Avalon® -ST Test Pattern Generator and Checker Cores 40. System ID Peripheral Core 41. Avalon® Packets to Transactions Converter Core 42. Avalon® -ST Multiplexer and Demultiplexer Cores 43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP 44. Avalon® -ST Delay Core 45. Avalon® -ST Round Robin Scheduler Core 46. Avalon® -ST Splitter Core 47. Avalon® -MM DDR Memory Half Rate Bridge Core 48. Intel FPGA GMII to RGMII Converter Core 49. HPS GMII to RGMII Adapter Intel® FPGA IP 50. Intel FPGA MII to RMII Converter Core 51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP 55. Altera ACE5-Lite Cache Coherency Translator 56. Lightweight UART Core

42.3.2. Parameters

The following sections list the available options in the IP Parameter Editor.

Functional Parameters

You can configure the following options for the demultiplexer as a whole:

  • Number of Output Ports—The number of output interfaces that the multiplexer supports. Valid values are 2–16.
  • High channel bits select output—When this option is on, the high bits of the input channel signal are used by the de-multiplexing function and the low order bits are passed to the output. When this option is off, the low order bits are used and the high order bits are passed through.

    The following example illustrates the significance of the location of these signals. In the Select Bits for De-multiplexer figure below there is one input interface and two output interfaces. If the low-order bits of the channel signal select the output interfaces, the even channels goes to channel 0 and the odd channels goes to channel 1. If the high-order bits of the channel signal select the output interface, channels 0–7 goes to channel 0 and channels 8–15 goes to channel 1.

Figure 150. Select Bits for De-multiplexer

Input Interface

You can configure the following options for the input interface:

  • Data Bits Per Symbol—The number of bits per symbol for the input and output interfaces. Valid values are 1 to 32 bits.
  • Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid values are 1 to 32.
  • Include Packet Support—Indicates whether or not packet transfers are supported. Packet support includes the startofpacket, endofpacket, and empty signals.
  • Channel Signal Width (bits)—The number of bits used for the channel signal for output interfaces. A value of 0 means that output interfaces do not use the optional channel signal.
  • Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0 means the error signal is not used.