Embedded Peripherals IP User Guide

ID 683130
Date 8/11/2025
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 3. Avalon® -ST Serial Peripheral Interface Core 4. SPI Core 5. SPI Agent/JTAG to Avalon® Host Bridge Cores 6. Intel eSPI Agent Core 7. eSPI to LPC Bridge Core 8. Ethernet MDIO Core 9. Intel FPGA 16550 Compatible UART Core 10. UART Core 11. JTAG UART Core 12. Intel FPGA Avalon® Mailbox Core 13. Intel FPGA Avalon® Mutex Core 14. Intel FPGA Avalon® I2C (Host) Core 15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 16. Intel FPGA Avalon® Compact Flash Core 17. EPCS/EPCQA Serial Flash Controller Core 18. Intel FPGA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller II Core 20. Intel FPGA Generic QUAD SPI Controller Core 21. Intel FPGA Generic QUAD SPI Controller II Core 22. Interval Timer Core 23. Intel FPGA Avalon FIFO Memory Core 24. On-Chip Memory (RAM and ROM) Intel FPGA IP 25. On-Chip Memory II (RAM or ROM) Intel FPGA IP 26. Optrex 16207 LCD Controller Core 27. PIO Core 28. PLL Cores 29. DMA Controller Core 30. Modular Scatter-Gather DMA Core 31. Scatter-Gather DMA Controller Core 32. SDRAM Controller Core 33. Tri-State SDRAM Core 34. Video Sync Generator and Pixel Converter Cores 35. Intel FPGA Interrupt Latency Counter Core 36. Performance Counter Unit Core 37. Vectored Interrupt Controller Core 38. Avalon® -ST Data Pattern Generator and Checker Cores 39. Avalon® -ST Test Pattern Generator and Checker Cores 40. System ID Peripheral Core 41. Avalon® Packets to Transactions Converter Core 42. Avalon® -ST Multiplexer and Demultiplexer Cores 43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP 44. Avalon® -ST Delay Core 45. Avalon® -ST Round Robin Scheduler Core 46. Avalon® -ST Splitter Core 47. Avalon® -MM DDR Memory Half Rate Bridge Core 48. Intel FPGA GMII to RGMII Converter Core 49. HPS GMII to RGMII Adapter Intel® FPGA IP 50. Intel FPGA MII to RMII Converter Core 51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP 55. Altera ACE5-Lite Cache Coherency Translator 56. Lightweight UART Core

22.3.3. Hardware Options

The following options affect the hardware structure of the interval timer core. As a convenience, the Preset Configurations list offers several pre-defined hardware configurations, such as:
  • Simple periodic interrupt—This configuration is useful for systems that require only a periodic IRQ generator. The period is fixed and the timer cannot be stopped, but the IRQ can be disabled.
  • Full-featured—This configuration is useful for embedded processor systems that require a timer with variable period that can be started and stopped under processor control.
  • Watchdog—This configuration is useful for systems that require watchdog timer to reset the system in the event that the system has stopped responding. Refer to the Configuring the Timer as a Watchdog Timer section.

Register Options

Table 250.  Register Options
Option Description
Writeable period When this option is enabled, a host peripheral can change the count-down period by writing to the period registers. When disabled, the count-down period is fixed at the specified Timeout Period, and the period registers do not exist in hardware.
Readable snapshot When this option is enabled, a host peripheral can read a snapshot of the current count-down. When disabled, the status of the counter is detectable only via other indicators, such as the status register or the IRQ signal. In this case, the snap registers do not exist in hardware, and reading these registers produces an undefined value.
Start/Stop control bits When this option is enabled, a host peripheral can start and stop the timer by writing the START and STOP bits in the control register. When disabled, the timer runs continuously. When the System reset on timeout (watchdog) option is enabled, the START bit is also present, regardless of the Start/Stop control bits option.

Output Signal Options

Table 251.  Output Signal Options
Option Description
Timeout pulse
(1 clock wide) When this option is on, the core outputs a signal timeout_pulse. This signal pulses high for one clock cycle whenever the timer reaches zero. When this option is off, the timeout_pulse signal does not exist.
System reset on timeout (watchdog) When this option is on, the core’s Avalon® -MM agent port includes the resetrequest signal. This signal pulses high for one clock cycle whenever the timer reaches zero resulting in a system-wide reset. The internal timer is stopped at reset. Explicitly writing the START bit of the control register starts the timer.

When this option is off, the resetrequest signal does not exist.

Refer to the Configuring the Timer as a Watchdog Timer section.