1. Introduction
2. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores
3. Avalon® -ST Serial Peripheral Interface Core
4. SPI Core
5. SPI Agent/JTAG to Avalon® Host Bridge Cores
6. Intel eSPI Agent Core
7. eSPI to LPC Bridge Core
8. Ethernet MDIO Core
9. Intel FPGA 16550 Compatible UART Core
10. UART Core
11. JTAG UART Core
12. Intel FPGA Avalon® Mailbox Core
13. Intel FPGA Avalon® Mutex Core
14. Intel FPGA Avalon® I2C (Host) Core
15. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core
16. Intel FPGA Avalon® Compact Flash Core
17. EPCS/EPCQA Serial Flash Controller Core
18. Intel FPGA Serial Flash Controller Core
19. Intel FPGA Serial Flash Controller II Core
20. Intel FPGA Generic QUAD SPI Controller Core
21. Intel FPGA Generic QUAD SPI Controller II Core
22. Interval Timer Core
23. Intel FPGA Avalon FIFO Memory Core
24. On-Chip Memory (RAM and ROM) Intel FPGA IP
25. On-Chip Memory II (RAM or ROM) Intel FPGA IP
26. Optrex 16207 LCD Controller Core
27. PIO Core
28. PLL Cores
29. DMA Controller Core
30. Modular Scatter-Gather DMA Core
31. Scatter-Gather DMA Controller Core
32. SDRAM Controller Core
33. Tri-State SDRAM Core
34. Video Sync Generator and Pixel Converter Cores
35. Intel FPGA Interrupt Latency Counter Core
36. Performance Counter Unit Core
37. Vectored Interrupt Controller Core
38. Avalon® -ST Data Pattern Generator and Checker Cores
39. Avalon® -ST Test Pattern Generator and Checker Cores
40. System ID Peripheral Core
41. Avalon® Packets to Transactions Converter Core
42. Avalon® -ST Multiplexer and Demultiplexer Cores
43. Avalon® -ST Bytes to Packets and Packets to Bytes Converter IP
44. Avalon® -ST Delay Core
45. Avalon® -ST Round Robin Scheduler Core
46. Avalon® -ST Splitter Core
47. Avalon® -MM DDR Memory Half Rate Bridge Core
48. Intel FPGA GMII to RGMII Converter Core
49. HPS GMII to RGMII Adapter Intel® FPGA IP
50. Intel FPGA MII to RMII Converter Core
51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP
52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core
53. Intel FPGA MSI to GIC Generator Core
54. Cache Coherency Translator Intel® FPGA IP
55. Altera ACE5-Lite Cache Coherency Translator
56. Lightweight UART Core
9.2.1. Unsupported Features
9.2.2. Interface
9.2.3. General Architecture
9.2.4. 16550 UART General Programming Flow Chart
9.2.5. Configuration Parameters
9.2.6. DMA Support
9.2.7. FPGA Resource Usage
9.2.8. Timing and Fmax
9.2.9. Avalon® -MM Agent
9.2.10. Over-run/Under-run Conditions
9.2.11. Hardware Auto Flow-Control
9.2.12. Clock and Baud Rate Selection
14.5.2.1. Transfer Command FIFO (TFR_CMD)
14.5.2.2. Receive Data FIFO (RX_DATA)
14.5.2.3. Control Register (CTRL)
14.5.2.4. Interrupt Status Enable Register (ISER)
14.5.2.5. Interrupt Status Register (ISR)
14.5.2.6. Status Register (STATUS)
14.5.2.7. TFR CMD FIFO Level (TFR CMD FIFO LVL)
14.5.2.8. RX Data FIFO Level (RX Data FIFO LVL)
14.5.2.9. SCL Low Count (SCL LOW)
14.5.2.10. SCL High Count (SCL HIGH)
14.5.2.11. SDA Hold Count (SDA HOLD)
23.6.1. altera_avalon_fifo_init()
23.6.2. altera_avalon_fifo_read_status()
23.6.3. altera_avalon_fifo_read_ienable()
23.6.4. altera_avalon_fifo_read_almostfull()
23.6.5. altera_avalon_fifo_read_almostempty()
23.6.6. altera_avalon_fifo_read_event()
23.6.7. altera_avalon_fifo_read_level()
23.6.8. altera_avalon_fifo_clear_event()
23.6.9. altera_avalon_fifo_write_ienable()
23.6.10. altera_avalon_fifo_write_almostfull()
23.6.11. altera_avalon_fifo_write_almostempty()
23.6.12. altera_avalon_write_fifo()
23.6.13. altera_avalon_write_other_info()
23.6.14. altera_avalon_fifo_read_fifo()
23.6.15. altera_avalon_fifo_read_other_info()
24.1. Core Overview
24.2. Component-Level Design for On-Chip Memory
24.3. Platform Designer System-Level Design for On-Chip Memory
24.4. Simulation for On-Chip Memory
24.5. Quartus® Prime Project-Level Design for On-Chip Memory
24.6. Board-Level Design for On-Chip Memory
24.7. Example Design with On-Chip Memory
24.8. On-Chip Memory (RAM and ROM) Intel FPGA IP Revision History
25.1. Core Overview
25.2. Embedded Memory Architecture and Features
25.3. Component-Level Configurations
25.4. Interface Signals
25.5. Control and Status Registers
25.6. Software Programming Model
25.7. Platform Designer System-Level Design for On-Chip Memory II
25.8. Simulation for On-Chip Memory II
25.9. Quartus® Prime Project-Level Design for On-Chip Memory II
25.10. Board-Level Design for On-Chip Memory II
25.11. Example Design with On-Chip Memory II
25.12. On-Chip Memory II (RAM and ROM) Intel FPGA IP Revision History
30.1. Core Overview
30.2. Feature Description
30.3. mSGDMA Interfaces and Parameters
30.4. mSGDMA Descriptors
30.5. Register Map of mSGDMA
30.6. Programming Model
30.7. Modular Scatter-Gather DMA Prefetcher Core
30.8. Driver Implementation
30.9. Example Code Using mSGDMA Core
30.10. Modular Scatter-Gather DMA Core Revision History
30.5.1. Status Register
30.5.2. Control Register
30.5.3. Write Fill Level Register
30.5.4. Read Fill Level Register
30.5.5. Response Fill Level Register
30.5.6. Write Sequence Number Register
30.5.7. Read Sequence Number Register
30.5.8. Component Configuration 1 Register
30.5.9. Component Configuration 2 Register
30.5.10. Component Type Register
30.5.11. Component Version Register
30.8.1. alt_msgdma_standard_descriptor_async_transfer
30.8.2. alt_msgdma_extended_descriptor_async_transfer
30.8.3. alt_msgdma_descriptor_async_transfer
30.8.4. alt_msgdma_standard_descriptor_sync_transfer
30.8.5. alt_msgdma_extended_descriptor_sync_transfer
30.8.6. alt_msgdma_descriptor_sync_transfer
30.8.7. alt_msgdma_construct_standard_st_to_mm_descriptor
30.8.8. alt_msgdma_construct_standard_mm_to_st_descriptor
30.8.9. alt_msgdma_construct_standard_mm_to_mm_descriptor
30.8.10. alt_msgdma_construct_standard_descriptor
30.8.11. alt_msgdma_construct_extended_st_to_mm_descriptor
30.8.12. alt_msgdma_construct_extended_mm_to_st_descriptor
30.8.13. alt_msgdma_construct_extended_mm_to_mm_descriptor
30.8.14. alt_msgdma_construct_extended_descriptor
30.8.15. alt_msgdma_register_callback
30.8.16. alt_msgdma_open
30.8.17. alt_msgdma_write_standard_descriptor
30.8.18. alt_msgdma_write_extended_descriptor
30.8.19. alt_msgdma_init
30.8.20. alt_msgdma_irq
31.7.1. Data Structure
31.7.2. SG-DMA API
31.7.3. alt_avalon_sgdma_do_async_transfer()
31.7.4. alt_avalon_sgdma_do_sync_transfer()
31.7.5. alt_avalon_sgdma_construct_mem_to_mem_desc()
31.7.6. alt_avalon_sgdma_construct_stream_to_mem_desc()
31.7.7. alt_avalon_sgdma_construct_mem_to_stream_desc()
31.7.8. alt_avalon_sgdma_enable_desc_poll()
31.7.9. alt_avalon_sgdma_disable_desc_poll()
31.7.10. alt_avalon_sgdma_check_descriptor_status()
31.7.11. alt_avalon_sgdma_register_callback()
31.7.12. alt_avalon_sgdma_start()
31.7.13. alt_avalon_sgdma_stop()
31.7.14. alt_avalon_sgdma_open()
37.5.6.1. altera_vic_driver.enable_preemption
37.5.6.2. altera_vic_driver.enable_preemption_into_new_register_set
37.5.6.3. altera_vic_driver.enable_preemption_rs_<n>
37.5.6.4. altera_vic_driver.linker_section
37.5.6.5. altera_vic_driver.<name>.vec_size
37.5.6.6. altera_vic_driver.<name>.irq<n>_rrs
37.5.6.7. altera_vic_driver.<name>.irq<n>_ril
37.5.6.8. altera_vic_driver.<name>.irq<n>_rnmi
37.5.6.9. Default Settings for RRS and RIL
37.5.6.10. VIC BSP Design Rules for Intel FPGA HAL Implementation
37.5.6.11. RTOS Considerations
39.1. Core Overview
39.2. Resource Utilization and Performance
39.3. Test Pattern Generator
39.4. Test Pattern Checker
39.5. Hardware Simulation Considerations
39.6. Software Programming Model
39.7. Test Pattern Generator API
39.8. Test Pattern Checker API
39.9. Avalon® -ST Test Pattern Generator and Checker Cores Revision History
39.7.1. data_source_reset()
39.7.2. data_source_init()
39.7.3. data_source_get_id()
39.7.4. data_source_get_supports_packets()
39.7.5. data_source_get_num_channels()
39.7.6. data_source_get_symbols_per_cycle()
39.7.7. data_source_set_enable()
39.7.8. data_source_get_enable()
39.7.9. data_source_set_throttle()
39.7.10. data_source_get_throttle()
39.7.11. data_source_is_busy()
39.7.12. data_source_fill_level()
39.7.13. data_source_send_data()
39.8.1. data_sink_reset()
39.8.2. data_sink_init()
39.8.3. data_sink_get_id()
39.8.4. data_sink_get_supports_packets()
39.8.5. data_sink_get_num_channels()
39.8.6. data_sink_get_symbols_per_cycle()
39.8.7. data_sink_set enable()
39.8.8. data_sink_get_enable()
39.8.9. data_sink_set_throttle()
39.8.10. data_sink_get_throttle()
39.8.11. data_sink_get_packet_count()
39.8.12. data_sink_get_symbol_count()
39.8.13. data_sink_get_error_count()
39.8.14. data_sink_get_exception()
39.8.15. data_sink_exception_is_exception()
39.8.16. data_sink_exception_has_data_error()
39.8.17. data_sink_exception_has_missing_sop()
39.8.18. data_sink_exception_has_missing_eop()
39.8.19. data_sink_exception_signalled_error()
39.8.20. data_sink_exception_channel()
6.4. Interface Signals
Signal Names | Width (bit) | Direction | Description |
---|---|---|---|
Clock Interface | |||
clk | 1 | Input | Input clock signal. |
Reset Interface | |||
reset_n | 1 | Input | Synchronous reset signal. |
Avalon® memory-mapped interface Agent Interface 8 | |||
avmm_read | 1 | Input | Use this signal to enable read from the status register, error register, posted RX fifo or non-posted RX fifo. |
avmm_readdata[31:0] | 32 | Output | Use this signal to read data from the status register , error register, posted RX fifo or non-posted RX fifo. |
avmm_write | 1 | Input | Use this signal to enable write to posted TX fifo or non-posted TX fifo. |
avmm_writedata[31:0] | 32 | Input | Use this signal to write data to posted TX fifo or non-posted TX fifo. |
avmm_address[4:0] | 5 | Input | Avalon address determines address to access the respective register/fifo. |
Interrupt Signal | |||
irq | 1 | Output | Interrupt signal reflects update to status register. It is also triggered when the error register bit is asserted. |
eSPI Interface | |||
espi_clk | 1 | Input | eSPI serial clock signal. Frequency range: 20 MHz to 66 MHz. |
espi_reset_n | 1 | Input | eSPI reset signal. |
espi_cs_n | 1 | Input | eSPI chip select signal. |
espi_data[1:0]/[3:0] | 2 or 4 | Input/Output | eSPI bidirectional data bus. Data bus configuration is determined by the eSPI Mode of Operation parameter.
|
espi_alert_n | 1 | Output | eSPI alert signal. |
Conduit | |||
slp_s5_n | 1 | Output | S5 sleep control signal is sent when the power to non-critical systems should be shut off in S5. |
slp_s4_n | 1 | Output | S4 sleep control signal is sent when the power to non-critical systems should be shut off in S4. |
slp_s3_n | 1 | Output | S3 sleep control signal is sent when the power to non-critical systems should be shut off in S3. |
slp_a_n | 1 | Output | Use sleep A signal to support ASW devices that need power in the SX platform when the Intel® ME is on. |
slp_lan_n | 1 | Output | LAN sub-system sleep control signal is sent when the power to external wired LAN PHY can be shut off. |
slp_wlan_n | 1 | Output | Wireless LAN sub-system sleep control signal is sent when the power to external wireless LAN PHY can be shut off. |
sus_stat_n | 1 | Output | Suspend status signal is sent when the system is about to enter a low power state. |
sus_pwrdn_ack | 1 | Output | Suspend power down acknowledgement signal. |
sus_warn_n | 1 | Output | Suspend warning signal. |
oob_rst_warn | 1 | Output | Host sends this signal before the OOB processor is about to reset. |
host_rst_warn | 1 | Output | Host sends this signal before the host is about to reset. |
smiout_n | 1 | Output | Host sends this signal indicating the occurrence of SMI event. |
nmiout_n | 1 | Output | Host sends this signal indicating the occurrence of NMI event. |
host_c10 | 1 | Output | Indicates that the host CPU has entered deep power down state C10 or deeper. |
pch_to_ec[7:0] | 8 | Output | 8 independent Virtual Wire placeholder from the platform controller hub (eSPI host) to the eSPI agent IP. |
ec_to_pch[7:0] | 8 | Input | 8 independent Virtual Wire placeholder from eSPI agent IP to the platform controller hub (eSPI host). |
sus_ack_n | 1 | Input | Suspend acknowledgement signal. |
oob_rst_ack | 1 | Input | OOB reset acknowledgement signal. |
wake_n | 1 | Input | This signal wakes host up from Sx on any event. It can also wake up on LID switch or AC insertion event. |
pme_n | 1 | Input | This signal wakes host up from Sx through PCI defined PME. |
sci_n | 1 | Input | General purpose alert signal which results in OS invoking ACPI method. |
smi_n | 1 | Input | General purpose alert signal which results in BIOS invoking SMI code. |
rcin_n | 1 | Input | To request CPU reset on behalf of the keyboard controller. |
host_rst_ack | 1 | Input | Host reset acknowledgement signal. |
slave_boot_load_done | 1 | Input | Indicates boot load completion. |
slave_boot_load_status | 1 | Input | Indicates boot load status. |
pc_port<n>_<direction>[(m-1):0] | m = 8/16/32 | Input/Output | Peripheral channel I/O ports with configurable data width and direction. n = configurable value from 00 to A0. For example: pc_port80_out[15:0] |
rsmrst_n | 1 | Input | This signal provides input reset to some of the Virtual Wire indexes. |
vw_irq0 [7:0] 9 | 8 | Input | The virtual interrupt signal is triggered by an external source to enable communication with eSPI core. |
vw_irq1 [7:0]9 | 8 | Input | |
pltrst_n | 1 | Output | Platform Reset Signal. |
8 Use Avalon® memory-mapped interface to access the status register with Avalon address set to 00h and also the FIFO in the PC channel with Avalon address set to 04h.
9 The eSPI client can send multiple VW IRQ index groups in a single eSPI packet, up to the Operating Maximum VW Count programmed in its Virtual Wire Capabilities and Configuration Channel. For more information, refer to Table 9: Virtual Wire Index in the Enhanced Serial Peripheral Interface (eSPI) Base Specification.