Visible to Intel only — GUID: GUID-D7DA4479-D055-4777-B851-694205D99669
Visible to Intel only — GUID: GUID-D7DA4479-D055-4777-B851-694205D99669
v?Atanh
Computes inverse hyperbolic tangent of vector elements.
vsAtanh( n, a, y );
vsAtanhI(n, a, inca, y, incy);
vmsAtanh( n, a, y, mode );
vmsAtanhI(n, a, inca, y, incy, mode);
vdAtanh( n, a, y );
vdAtanhI(n, a, inca, y, incy);
vmdAtanh( n, a, y, mode );
vmdAtanhI(n, a, inca, y, incy, mode);
vcAtanh( n, a, y );
vcAtanhI(n, a, inca, y, incy);
vmcAtanh( n, a, y, mode );
vmcAtanhI(n, a, inca, y, incy, mode);
vzAtanh( n, a, y );
vzAtanhI(n, a, inca, y, incy);
vmzAtanh( n, a, y, mode );
vmzAtanhI(n, a, inca, y, incy, mode);
- mkl.h
Name |
Type |
Description |
---|---|---|
n |
const MKL_INT |
Specifies the number of elements to be calculated. |
a |
const float* for vsAtanh, vmsAtanh const double* for vdAtanh, vmdAtanh const MKL_Complex8* for vcAtanh, vmcAtanh const MKL_Complex16* for vzAtanh, vmzAtanh |
Pointer to an array that contains the input vector a. |
inca, incy |
const MKL_INT |
Specifies increments for the elements of a and y. |
mode |
const MKL_INT64 |
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. |
Name |
Type |
Description |
---|---|---|
y |
float* for vsAtanh, vmsAtanh double* for vdAtanh, vmdAtanh MKL_Complex8* for vcAtanh, vmcAtanh MKL_Complex16* for vzAtanh, vmzAtanh |
Pointer to an array that contains the output vector y. |
The v?Atanh function computes inverse hyperbolic tangent of vector elements.
Argument | Result | VM Error Status | Exception |
---|---|---|---|
+1 | +∞ | VML_STATUS_SING | ZERODIVIDE |
-1 | -∞ | VML_STATUS_SING | ZERODIVIDE |
|X| > 1 | QNAN | VML_STATUS_ERRDOM | INVALID |
+∞ | QNAN | VML_STATUS_ERRDOM | INVALID |
-∞ | QNAN | VML_STATUS_ERRDOM | INVALID |
QNAN | QNAN | ||
SNAN | QNAN | INVALID |
See Special Value Notations for the conventions used in the table below.
RE(z) i·IM(z) |
-∞
|
-X
|
-0
|
+0
|
+X
|
+∞
|
NAN
|
---|---|---|---|---|---|---|---|
+i·∞ | -0+i·π/2 | -0+i·π/2 | -0+i·π/2 | +0+i·π/2 | +0+i·π/2 | +0+i·π/2 | +0+i·π/2 |
+i·Y | -0+i·π/2 | +0+i·π/2 | QNAN+i·QNAN |
||||
+i·0 | -0+i·π/2 | -0+i·0 | +0+i·0 | +0+i·π/2 | QNAN+i·QNAN |
||
-i·0 | -0-i·π/2 | -0-i·0 | +0-i·0 | +0-i·π/2 | QNAN-i·QNAN |
||
-i·Y | -0-i·π/2 | +0-i·π/2 | QNAN+i·QNAN |
||||
-i·∞ | -0-i·π/2 | -0-i·π/2 | -0-i·π/2 | +0-i·π/2 | +0-i·π/2 | +0-i·π/2 | +0-i·π/2 |
+i·NAN | -0+i·QNAN |
QNAN+i·QNAN |
-0+i·QNAN |
+0+i·QNAN |
QNAN+i·QNAN |
+0+i·QNAN |
QNAN+i·QNAN |
Notes:
Atanh(+-1+-i*0)=+-∞+-i*0, and ZERODIVIDE exception is raised
raises INVALID exception when real or imaginary part of the argument is SNAN
Atanh(CONJ(z))=CONJ(Atanh(z))
Atanh(-z)=-Atanh(z).