Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_cspblas_?csrtrsv

Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing (deprecated).

Syntax

void mkl_cspblas_scsrtrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const float *a , const MKL_INT *ia , const MKL_INT *ja , const float *x , float *y );

void mkl_cspblas_dcsrtrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const double *a , const MKL_INT *ia , const MKL_INT *ja , const double *x , double *y );

void mkl_cspblas_ccsrtrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );

void mkl_cspblas_zcsrtrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16 *y );

Include Files
  • mkl.h
Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3-array variation) with zero-based indexing:

A*y = x

or

AT*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports only zero-based indexing of the input arrays.

Input Parameters

uplo

Specifies whether the upper or low triangle of the matrix A is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix A is used.

If uplo = 'L' or 'l', then the low triangle of the matrix A is used.

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then A*y = x

If transa = 'T' or 't' or 'C' or 'c', then AT*y = x,

diag

Specifies whether matrix A is unit triangular.

If diag = 'U' or 'u', then A is unit triangular.

If diag = 'N' or 'n', then A is not unit triangular.

m

Number of rows of the matrix A.

a

Array containing non-zero elements of the matrix A. Its length is equal to the number of non-zero elements in the matrix A. Refer to values array description in Sparse Matrix Storage Formats for more details.

NOTE:

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

ia

Array of length m+1, containing indices of elements in the array a, such that ia[i] is the index in the array a of the first non-zero element from the row i. The value of the last element ia[m] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

ja

Array containing the column indices for each non-zero element of the matrix A.

Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

NOTE:

Column indices must be sorted in increasing order for each row.

x

Array, size is m.

On entry, the array x must contain the vector x.

Output Parameters
y

Array, size at least m.

Contains the vector y.