Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

p?unmhr

Multiplies a general matrix by the unitary transformation matrix from a reduction to Hessenberg form determined by p?gehrd.

Syntax

void pcunmhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo , MKL_INT *ihi , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );

void pzunmhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo , MKL_INT *ihi , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );

Include Files
  • mkl_scalapack.h
Description

This function overwrites the general complex distributed m-by-n matrix sub(C) = C(:+m-1,:+n-1) with

  side ='L' side ='R'
trans = 'N': Q*sub(C) sub(C)*Q
trans = 'H': QH*sub(C) sub(C)*QH

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and nq = n if side = 'R'.

Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1).

Input Parameters
side

(global)

='L': Q or QH is applied from the left.

='R': Q or QH is applied from the right.

trans

(global)

='N', no transpose, Q is applied.

='C', conjugate transpose, QH is applied.

m

(global) The number of rows in the distributed matrix sub (C) (m0).

n

(global) The number of columns in the distributed matrix sub (C) (n0).

ilo, ihi

(global)

These must be the same parameters ilo and ihi, respectively, as supplied to p?gehrd. Q is equal to the unit matrix except in the distributed submatrixQ(ia+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).

If side ='L', then 1≤iloihi≤max(1,m).

If side = 'R', then 1≤iloihi≤max(1,n)

ilo and ihi are relative indexes.

a

(local)

Pointer into the local memory to an array of size lld_a*LOCc(ja+m-1) if side = 'L', and lld_a*LOCc(ja+n-1) if side = 'R'.

Contains the vectors which define the elementary reflectors, as returned by p?gehrd.

ia, ja

(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.

desca

(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

tau

(local)

Array of size LOCc(ja+m-2), if side = 'L', and LOCc(ja+n-2) if side = 'R'.

tau[j] contains the scalar factor of the elementary reflector H(j+1) as returned by p?gehrd (0 ≤ j < size(tau)). tau is tied to the distributed matrix A.

c

(local)

Pointer into the local memory to an array of size lld_c*LOCc(jc+n-1).

Contains the local pieces of the distributed matrix sub(C).

ic, jc

(global) The row and column indices in the global matrix C indicating the first row and the first column of the submatrix C, respectively.

descc

(global and local) array of size dlen_. The array descriptor for the distributed matrix C.

work

(local)

Workspace array with size lwork.

lwork

(local or global)

The size of the array work.

lwork must be at least iaa = ia + ilo;jaa = ja+ilo-1;

If side = 'L', mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc; lworkmax((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a) + nb_a*nb_a

else if side = 'R',

mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lworkmax((nb_a*(nb_a-1))/2, (nqc0 + max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq ), mpc0))*nb_a) + nb_a*nb_a

end if

where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),

icoffa = mod(jaa-1, nb_a),

iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),

icoffc = mod(jcc-1, nb_c),

icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

NOTE:

mod(x,y) is the integer remainder of x/y.

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters
c

C is overwritten by Q* sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.

work[0])

On exit work[0] contains the minimum value of lwork required for optimum performance.

info

(global)

= 0: the execution is successful.

< 0: if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.

See Also