Visible to Intel only — GUID: GUID-6EB940C2-04B7-409A-8709-AE34E53BE18C
Visible to Intel only — GUID: GUID-6EB940C2-04B7-409A-8709-AE34E53BE18C
mkl_?bsrmv
Computes matrix - vector product of a sparse matrix stored in the BSR format (deprecated).
void mkl_sbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_INT *lb , const float *alpha , const char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *x , const float *beta , float *y );
void mkl_dbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_INT *lb , const double *alpha , const char *matdescra , const double *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const double *x , const double *beta , double *y );
void mkl_cbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_INT *lb , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex8 *x , const MKL_Complex8 *beta , MKL_Complex8 *y );
void mkl_zbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const MKL_INT *lb , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex16 *x , const MKL_Complex16 *beta , MKL_Complex16 *y );
- mkl.h
This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrmv routine performs a matrix-vector operation defined as
y := alpha*A*x + beta*y
or
y := alpha*AT*x + beta*y,
where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k block sparse matrix in the BSR format, AT is the transpose of A.
This routine supports a BSR format both with one-based indexing and zero-based indexing.
- transa
-
Specifies the operation.
If transa = 'N' or 'n', then the matrix-vector product is computed as y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as y := alpha*AT*x + beta*y,
- m
-
Number of block rows of the matrix A.
- k
-
Number of block columns of the matrix A.
- lb
-
Size of the block in the matrix A.
- alpha
-
Specifies the scalar alpha.
- matdescra
-
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra”.
- val
-
Array containing elements of non-zero blocks of the matrix A. Its length is equal to the number of non-zero blocks in the matrix A multiplied by lb*lb.
Refer to values array description in BSR Format for more details.
- indx
-
For one-based indexing, array containing the column indices plus one for each non-zero block of the matrix A. For zero-based indexing, array containing the column indices for each non-zero block of the matrix A.
Its length is equal to the number of non-zero blocks in the matrix A.
Refer to columns array description in BSR Format for more details.
- pntrb
-
Array of length m.
This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of block row i in the array indx
Refer to pointerB array description in BSR Format for more details.
- pntre
-
Array of length m.
For zero-based indexing this array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of block row i in the array indx.
Refer to pointerE array description in BSR Format for more details.
- x
-
Array, size at least (k*lb) if transa = 'N' or 'n', and at least (m*lb) otherwise. On entry, the array x must contain the vector x.
- beta
-
Specifies the scalar beta.
- y
-
Array, size at least (m*lb) if transa = 'N' or 'n', and at least (k*lb) otherwise. On entry, the array y must contain the vector y.
- y
-
Overwritten by the updated vector y.